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Introduction to surface Emitting Lasers: 
VCSEL vs. VECSEL?
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Benefits of VECSELs
• High Power and High Beam Quality 
• Wavelength Tolerant Barrier pumping with low cost broad-area lasers 
• Power Scaling by increased beam diameter 
• Access to intra-cavity radiation (Wavelength tuning, mode 
locking, high-orders beams generation)

VECSEL (typically optically pumped)



Mode-Lock VECSEL for Optical 
Communication
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Schematics picture of the proposed mode-lock VECSEL with InGaAsP QW, and 
SESAM saturable absorber.  

• Design, fabrication and characterization of  high power, high-order mode-locked 
VECSELs in the 1050nm and 1310nm. 

• The research will provide unique cross-disciplinary research opportunity for 2 PhD 
students: design and modeling SC lasers, Micro/nanofab., cavity design, nonlinear 
optics, high energy short pulse,…..



Watt-level Outputs of Higher HG and LG Modes
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3D profiles of fundamental wavelength Hermite-Gaussian 
modes

Images of green Hermite-Gaussian modes

Images of HG10, HG11 and their 
corresponding converted LG10, LG01 
modes; spiral interference pattern of 
LG01 mode with spherical wavefront.

Applications: in fiber and free space communication, atom and particle 
trapping, manipulation of bilogical cells,…



Proposed Research: High Order, Short Pulse 
VECSELs for free-space and fiber Applications
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• Mr. Nathan Gottesman
• Mr. Kelby Todd

PhD students:



Motivation

• Challenge: Higher bandwidth and data 
rates required as internet traffic 
continues to grow

• Solution: Mode Division Multiplexing 
(MDM) 
– requires a robust, tunable, stable, 

ultrashort pulsed high order laser source at 
telecom wavelengths (~1050 nm and 1310 
nm) that is compact and inexpensive

• Approach: A custom VECSEL 
– Tunable for FSO (1030 nm – 1070 nm) 
– Tunable in the O-band (1290 nm – 1330 

nm)
– Ultrashort pulses (<10 ps)
– High power operation (>1 W peak 

power)
– Fast, flexible repetition rates (500 MHz- 

several GHz)
– Higher Order Laguerre Gaussian and 

Hermite Gaussian modes
– Compact package
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Hermite Gaussian Laguerre Gaussian

Higher Order Transverse Modes
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Air
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VECSEL Linear Cavity Geometry Semiconductor Gain Chip Structure
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Proof of concept for Intra-Cavity 
Astigmatic Mode Conversion

• Two Mirror Based Astigmatic mode 
converters will be used to for a cavity.

• The location of the VECSEL and pump 
displacement with control the mode.

• Permutations of this design will enable 
mode locking

CW Intra-Cavity Astigmatic Mode 
Conversion
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Experimental Results

Ref. [4]
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Mode-locked VECSEL V-Cavity Geometry

Semiconductor  Saturable 
Absorber Mirror

SESAM Chip Structure

Output Coupling Mirror

VECSEL Chip

SESAM Chip



How Does a SESAM Work?
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Before Saturation Fluence At Saturation Fluence Gain/Loss Dynamics



Benchtop cavity for mode-locking
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SESAM

VECSEL chip

Output coupler

Fold mirror



Observed HG modes
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Optical spectrum 
(upper) and radio 
frequency spectrum 
(lower).  ~1.2GHz

Observed 𝐻𝐻𝐺𝐺0𝑛𝑛 
modes.
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Design of the E-field Distribution
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Design of the Quantum Well Gain
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Modelling and Design:
the 1310 nm Wafer
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Design of the E-field Distribution
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Design of E-Field Distribution

𝑅𝑅 =
𝐴𝐴0− 2
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Design of the Quantum Well Gain
Band gap of In1−xGaxAsyP1−y

• Since this is our first InGaAsP growth, to simplify calculations 
we fix x=0.47y to lattice match to InP
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Design of the Quantum Well Gain
Finite Quantum Well Problem

𝐸𝐸 𝜓𝜓 = 𝐻𝐻 𝜓𝜓

𝐻𝐻 =
−ℏ2

2𝑚𝑚𝑐𝑐|𝑣𝑣

𝜕𝜕2

𝜕𝜕𝑧𝑧2 + 𝑉𝑉(𝑧𝑧)

𝑉𝑉 𝑧𝑧 = 𝑉𝑉0 − Δ𝑉𝑉𝑉𝑉𝑒𝑒𝑉𝑉𝜕𝜕
𝑧𝑧
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Design of the Quantum Well Gain
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Design of Quantum Well Gain
Line shape Broadening

𝑔𝑔 𝐸𝐸𝑝𝑝 = ∫ 𝑔𝑔𝑖𝑖𝑗𝑗𝐿𝐿 𝐸𝐸𝑝𝑝 − 𝐸𝐸𝑖𝑖𝑗𝑗 𝑑𝑑𝐸𝐸𝑖𝑖𝑗𝑗
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Design of the Quantum Well Gain

• Gain redshifts with temperature 
• Driven by bandgap redshift with temperature ≈ −387 𝜇𝜇𝑒𝑒𝑉𝑉/𝐾𝐾
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Full Structure Gain

𝐺𝐺 = Γ𝜕𝜕𝑒𝑒𝑔𝑔𝑄𝑄𝑄𝑄𝐿𝐿𝑧𝑧
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Microfabrication and 
Characterization

• Upon receiving the wafers from our industry partner, we began 
developing a procedure to process the wafers into chips.

• This involves several steps that will be covered in what follows.
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Wafer Map
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SEM
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Microfabrication Process
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Characterization: PL Spectra
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uncoatedAR coated



Sub-cavity resonance effect
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Paths toward lasing: in-well pump

30



Paths toward lasing: Strain

• By introducing strain to our existing structures, we may be able 
to reach laser threshold.

• We will experiment with mounting techniques to do this.
• In future designs, we can design a strained QW active region.
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Alternatives

• Additionally, we may explore alternative material systems such 
as InGaAlAs/InP, which is commonly used in telecom 
applications.

• InGaAlAs has a larger conduction band offset, leading to better 
electron confinement and a significantly reduced leakage 
current density.
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Questions?
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