

Dual Tunability of Lithium Niobate Microresonators

Ian Briggs Professor Linran Fan Wyant College of Optical Sciences University of Arizona

- Lithium Niobate Microresonator Overview
- Dual tunability method
- Tuning SH frequency conversion
- Aligning multiple resonators

Lithium Niobate microresonators

Li

Nb

0

- Lithium Niobate: very large $\chi^{(2)}$ nonlinearity $\boldsymbol{P} = \epsilon_0 \Big[\chi^{(1)} \boldsymbol{E} + \chi^{(2)} \boldsymbol{E} \boldsymbol{E} + \chi^{(3)} \boldsymbol{E} \boldsymbol{E} \boldsymbol{E} + \cdots \Big]$
- Non-centrosymmetric crystal
- $\chi^{(2)}$ material applications:
 - Optical modulation
 - Frequency conversion
 - Photon pair generation
 - Squeezed light generation

Lithium Niobate microresonators

- Nanophotonics: decrease mode volume $g \propto 1/\sqrt{\mathcal{V}}$
- Resonator: enhances interaction strength, decreases spectral linewidth

Optica 6(12) 1455-1560 (2019)

Importance of Tunability

• Quantum frequency conversion: alignment of source wavelength with frequency conversion wavelengths

• Generating cluster states from multiple nonlinear sources

Article	λ	
Optica 3 (10) 1126-1131 (2016)	1543.94 nm	
Light: Sci & App 6 e16249 (2017)	1550.96 nm	
Optica 6 (10) 1361-1366 (2019)	1559.635 nm	
Optica 6 (12) 1455-1460 (2019)	1617.43 nm	

Table S2. Calibrated SHG efficiency η from multiple devices

Dev.	λ_{pump} (nm)	$Q_{\rm L,tele/nvis}$	$Q_{0,\text{tele/nvis}}$	IL _{tele/nvis} (dB/facet)	$\eta (\%/W)$
1	1617	800 k / 180 k	1.8 M / 1.0 M	9.0 / 12.6	250,000
2	1522	690 k / 290 k	1.0 M / 980 k	8.0 / 13.8	130,000
3	1520	1.1 M / 370 k	1.9 M / 590 k	8.8 / 12.5	170,000
4	1518	1.2 M / 480 k	1.5 M / 610 k	8.5 / 13.5	150,000

Resonator Alignment

- Efficiency is maximized when all relevant frequencies are in-resonance $OPL = nC = m\lambda$
- Alignment is NOT guaranteed due to dispersion
- Resonances typically aligned using temperature
- Resonance alignment can only be achieved at a limited set of wavelengths

Dual Tunability Method

- Need another degree of freedom to achieve a range of aligned wavelengths
- Electro-optic tuning: apply DC electric field to lithium niobate

Resonator Architecture

9

Tuning Characterization

Multiple Resonator Alignment

