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Research Group Capabilities
Heterogeneous Integration Methods
• Methods for epitaxial transfer of III-V materials onto silicon have 

been developed in the Dallesasse Research Group
• Transfer method results in top epitaxial layer facing “up” after 

transfer, facilitating device fabrication after transfer
• Precise positioning of III-V material in a wafer-scale process
• Thickness of transferred material can be precisely controlled
Photonic Devices
• Design and fabrication of mid-IR emitters for sensing systems 

(quantum cascade)
• VCSEL mode control for LIDAR/3D Imaging/Data Center
Nitride Photonics
• Preliminary work on photonic integration using arsenide/phosphide 

gain material heterogeneously integrated with III-N material for 
photon control

• Device designs have been examined for MZMs, tuning elements for 
tunable lasers, electrically-controlled polarization rotators

• Low static power dissipation – field-controlled devices
• Mn in III-N materials – photon control of spin state, possible quantum 

information application
Modeling Capabilities
• Band structure calculations for III-N materials, photonic device 

modeling (waveguides, coupling structures, DBRs, Schrodinger-
Poisson solvers), strained quantum dots 
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Research Areas [1]
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Research Areas [2]
Transistor-Injected QCL III-N Photonics

III-N MZMs & PICs

• Tunable Lasers, MZMs, Coherent Rx
• V-Controlled Polarization Rotators
• Quantum Computing
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Single-Polarization VCSEL Motivation
• Optical Polarization Control for VCSELs

Polarization-Controlled IID VCSELs
• High-Power Single-Mode IID VCSELs

• Disorder-Defined Apertures for Single-Polarization

• Polarization-Resolved LIV and OPSR Analysis
Anti-Phase Coating VCSELs

• Anti-Phase Coating Theory and Simulation

• High-Power Single-Mode VCSEL Operation

• Single-Mode, Single-Polarization VCSELs
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Presentation Outline 
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Cross-Section of Disorder-Defined VCSEL

2D VCSEL Array [1] VCSEL-based FaceID [2]
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Block-Gift Grant Tasks and Milestones

3 um

Program Tasks in Year 1
Single-Polarization Operation 

in VCSELs
 1.1: Optical modeling of polarization 

modes in VCSEL structures 
 1.2: Design of optical polarization coating 

utilizing mode-control technologies 
 1.3: Single device layout and mask design 

of polarization controlled VCSEL
 1.4: Process development and fabrication 

of polarization controlled VCSEL design
 1.5: Benchmark of VCSEL design for 

single-polarization performance through 
polarization-resolved light-current-
voltage (PR-L-I-V) measurements

Program Tasks in Year 2
Optical Transverse-Mode and Polarization 

Controlled VCSEL
o 2.1: Optical modeling of a single-mode, 

single-polarization VCSEL structure 
 2.2: Design of optical polarization coating 

modified for transverse-mode control 
 2.3: Mask design and layout of single-

mode, single-polarization VCSEL design 
 2.4: Process flow and fabrication of 

optical mode and polarization controlled 
VCSELs

 2.5: Benchmark of VCSEL design for 
single mode, single polarization 
performance

Program Tasks in Year 3
Single-Mode and Single-Polarization 2-D 

VCSEL Arrays
o 3.1: Optical modeling of single mode, 

single polarization 2-D VCSEL arrays
 3.2: Calculation of near-/far-field 

patterns of single mode, single 
polarization VCSELs 

 3.3: Mask design and layout of single 
mode, single polarization 2D VCSEL 
array 

o 3.4: Process flow and fabrication of single 
mode, single polarization 2D VCSEL arrays 

o 3.5: Benchmark of VCSEL beam quality for 
various 2D array layout designs 

o 3.6: Experimental analysis of near-/far-field 
emission patterns of 2-D VCSEL arrays
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Current and Emerging VCSEL Applications

Augmented and Virtual Reality (AR/VR) Headsets [4,5]

ToF LiDAR for Autonomous Driving and Robotics [7,8]

3-D Facial Recognition Systems [2]

3-Junction VCSEL

Dot Projector
VCSEL Array

Optical Transceivers in Datacenters [6]

Conceptual Rendering



Structured Light   
Structured Light
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Optical Depth Sensing Techniques

• Structured light utilizes VCSEL arrays as the premier illumination source for sensing

• Benefit from spatial profile, brightness and spectral characteristics of the VCSEL light

Baseline

D
ep

th

Projector Camera   

2D VCSEL Array [1]

VCSEL-based FaceID [9] VCSEL Module for Structured Light [10] Principles of Structured Light [11]



Single-Polarization VCSEL Motivation
• Optical Polarization Control for VCSELs

Polarization-Controlled IID VCSELs
• High-Power Single-Mode IID VCSELs

• Disorder-Defined Apertures for Single-Polarization

• Polarization-Resolved LIV and OPSR Analysis
Anti-Phase Coating VCSELs

• Anti-Phase Coating Theory and Simulation

• High-Power Single-Mode VCSEL Operation

• Single-Mode, Single-Polarization VCSELs
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Impurity-Induced Disordering

Significance of Impurity-Induced Disordering

• Laidig and Holonyak et al. [14] recognized diffused Zn 
intermixes and disorders discrete AlAs-GaAs 
superlattices

• Zinc diffusion results in smooth, homogenous, bulk 
AlxGa1-xAs of the original superlattice pairs

• Enables spatially modified index of refraction, bandgap, 
optical reflectivity, and conductivity of AlxGa1-xAs

Angle-lapped Micrograph of a Disordered AlAs-GaAs 
Superlattice via Zn-Diffusion

Laidig, W. D., et al. "Disorder of an AlAs-GaAs superlattice by impurity 
diffusion." Applied Physics Letters 38.10 (1981): 776-778.
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Cross-sectional view of 
a Traditional VCSEL

Top-Side View of Optical Transverse Modes in 
a Traditional VCSEL

• Design disordering region in the shape of an aperture that leaves the center 
unaffected

• Disorder-defined aperture designed to induce higher threshold modal gain 
selectively to higher-order modes

Disorder-Defined Apertures for Single-Mode
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Disorder-Defined Apertures for Single-Mode

Cross-sectional view of 
a Disorder-Defined VCSEL

Top-Side View of Optical Transverse Modes in 
a Disorder-Defined VCSEL

• Design disordering region in the shape of an aperture that leaves the center 
unaffected

• Disorder-defined aperture designed to induce higher threshold modal gain 
selectively to higher-order modes
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Varying Diffusion Mask Strain

• Compressively-, unstrained, and tensilely- 
strained SiNx diffusion masks are utilized for 
fabricating single-mode IID VCSELs

• Diffusion mask strain impacts single-mode 
performance

• Devices fabricated using high-power designed 
epitaxy and standard-oxide confined VCSEL 
process with 0.5 µm larger IID aperture

Compressive SiNx (-579 MPa)Tensile SiNx (+639 MPa)

Impact of Diffusion Mask Strain
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High-Power VCSEL Characterization

Electro-optic and Spectral Performance

• VCSELs tested under continuous-wave (CW), 
room-temperature operation

• Spectra collected confirms single-
fundamental-mode lasing (SMSR > 30 dB)

[13] Su, Patrick, et al. "High-power single-mode vertical-cavity surface-
emitting lasers using strain-controlled disorder-defined 
apertures." Applied Physics Letters 119.24 (2021): 241101. 

Oxide-Aperture
Diameter

Disordering
Aperture

Max SM 
Power

Diff. 
Resistance

9 μm 3.0 μm 8.52 mW 92 Ω

10 μm 3.6 μm 9.57 mW 82 Ω

11 μm 4.0 μm 10.20 mW 79 Ω

12 μm 4.1 μm 10.57 mW 64 Ω

13 μm 4.7 μm 10.95 mW 58 Ω
Light-current-voltage characteristics and with optical 

spectra inset of 13 μm IID VCSEL [13]
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Benchmarking High-Power Single-Mode VCSELs

Record-Setting Single-Mode Output Power

• Literature review of high-power single-mode 
VCSELs using any method

• Surface relief, high contrast gratings, ARROW 
design, holey-structures, anti-phase filters, and 
other Zn-diffusion/IID VCSEL work shown

• Strain-controlled disorder-defined apertures 
achieves world-record single-mode output 
powers
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Single-Polarization VCSELs using Elliptical Apertures
Polarization Control in VCSELs

• VCSELs inherently emit in an unstable polarization state 
[12], aligned to either the [110] and [1�10] crystal axes 

• Any fluctuation in temperature, injection current, and 
package strain leads to “polarization-switching”

• Singe-polarization emission reduces RIN [22] and 
improves fidelity in depth sensors [23]

• Asymmetric disorder-defined/anti-phase coating 
apertures are designed to suppress certain polarization 
states
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PR-LIV of 10 μm Non-Disordered VCSELs

Baseline PR-LIV Measurements

• Non-disordered 10 μm VCSELs are characterized 
for their PR-LIV characteristics

• Major and minor axis measurements are swept 
separately

• Major and minor axis L-I show fluctuations in 
polarization emission

• Total major + minor axis L-I returns smooth 
VCSEL L-I characteristic
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OPSR of 10 μm Non-Disordered (ND) VCSELs
Baseline OPSR Measurements

OPSR = 10 log10
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.

• OPSR is calculated using PR-LIV characteristic 
measured for three separate ND VCSEL devices

• OPSR target mark is 20 dB from major axis to 
minor axis using total power as opposed to 
spectral peak-to-peak

• OPSR of ND VCSELs show rather unstable, low-
degree of polarization emission

• Minor degree of polarization attributed to 
strained MQW and 2° off-cut GaAs substrate
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PR-LIV of Circularly-Disordered 10 μm VCSELs
Circularly-Shaped Disorder-Defined VCSELs

• Symmetrically shaped disorder-defined VCSELs 
are characterized for PR-LIV and OPSR

• For a (9,9) μm IID apertures, improvement in 
single-polarization emission is shown

• Delayed stimulated emission from minor axis 
until 7 mA and falls off at 14 mA

• Major and minor axis are separate sweeps, 
shows consistency of polarization switching 
effect
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PR-LIV of Circularly-Disordered 10 μm VCSELs
Circularly-Shaped Disorder-Defined VCSELs

• Symmetrically shaped disorder-defined VCSELs 
are characterized for PR-LIV and OPSR

• For a (9,9) μm IID apertures, improvement in 
single-polarization emission is shown

• Delayed stimulated emission from minor axis 
until 7 mA and falls off at 14 mA

• Major and minor axis are separate sweeps, 
shows consistency of polarization switching 
effect 0 5 10 15 20 25
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OPSR of Circularly-Disordered 10 μm VCSELs

• OPSR of (7,7) µm circularly-shaped improvement over (9,9) µm circularly-shaped 
with lower output power
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OPSR of Circularly-Disordered 10 μm VCSELs

Circularly-Shaped Disorder-Defined VCSELs

• For large (9 µm) circularly-disordered VCSELs, the 
degree of polarization improves (~13 dB)

• For smaller (7 µm) circularly-disordered VCSELs, 
single polarization achieved (~18 dB)

• Smallest (5 μm) circularly-disordered VCSELs 
degrades major axis, hence, lower OPSR (~15 dB)

OPSR = 10 log10
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.
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PR-LIV of Elliptically-Shaped 10 μm VCSELs

Elliptically-Shaped Disordered VCSELs

• PR-LIV of circular (9,9) µm IID VCSEL shows 
moderate polarizations switching

• PR-LIV of elliptical (9,8) µm IID VCSEL shows 
strong single-polarization emission

• PR-LIV of elliptical (9,6) µm IID VCSEL shows 
single-polarization emission with less output 
power
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PR-LIV of Elliptically-Shaped 10 μm VCSELs
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Elliptically-Shaped Disordered VCSELs

• PR-LIV of circular (9,9) µm IID VCSEL shows 
moderate polarizations switching

• PR-LIV of elliptical (9,8) µm IID VCSEL shows 
strong single-polarization emission

• PR-Spectra of elliptical (9,8) µm IID VCSEL 
confirms single-polarization emission with 
spectral OPSR >19 dB

• PR-LIV of elliptical (9,6) µm IID VCSEL shows 
single-polarization emission with less output 
power
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PR-LIV of Elliptically-Shaped 10 μm VCSELs
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Elliptically-Shaped Disordered VCSELs

• PR-LIV of circular (9,9) µm IID VCSEL shows 
moderate polarizations switching

• PR-LIV of elliptical (9,8) µm IID VCSEL shows 
strong single-polarization emission

• PR-Spectra of elliptical (9,8) µm IID VCSEL 
confirms single-polarization emission with 
spectral OPSR >19 dB

• PR-LIV of elliptical (9,6) µm IID VCSEL shows 
single-polarization emission with less output 
power
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PR-LIV of Elliptically-Shaped 10 μm VCSELs

Elliptically-Shaped Disordered VCSELs

• PR-LIV of circular (9,9) µm IID VCSEL shows 
moderate polarizations switching

• PR-LIV of elliptical (9,8) µm IID VCSEL shows 
strong single-polarization emission

• PR-Spectra of elliptical (9,8) µm IID VCSEL 
confirms single-polarization emission with 
spectral OPSRs >19 dB

• PR-LIV of elliptical (9,6) µm IID VCSEL shows 
single-polarization emission with less output 
power
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PR-LIV of Elliptically-Shaped 10 μm VCSELs

Elliptically-Shaped Disordered VCSELs

• PR-LIV of circular (9,9) µm IID VCSEL shows 
moderate polarizations switching

• PR-LIV of elliptical (9,8) µm IID VCSEL shows 
strong single-polarization emission

• PR-Spectra of elliptical (9,8) µm IID VCSEL 
confirms single-polarization emission with 
spectral OPSR >19 dB

• PR-LIV of elliptical (9,6) µm IID VCSEL shows 
single-polarization emission with less output 
power
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OPSR of Elliptically-Shaped 10 μm VCSELs

Elliptically-Shaped Disordered VCSELs

• Elliptical (9,8) µm IID VCSEL show strong 
(OPSR > 20 dB) single-polarization emission

• Shrinking minor axis only begins to degrade 
total output power and hence OPSR

• OPSR in these devices are limited by the 
amount of major axis output power

OPSR = 10 log10
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.
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Summary of Polarization Control VCSEL

Single-Polarization IID VCSELs

• Demonstrated single-polarization (OPSR > 20 dB) 
disorder-defined VCSELs using elliptically-shaped 
apertures

• Polarization very sensitive and even a slightly 
asymmetric aperture can achieve high degree of 
polarization
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Presentation Outline

3 um

n-DBR

n-contact

p-contact
Anti-Phase 
Coating
Oxide 
Aperture

Active 
Region

p-DBR

GaAs Substrate

AFM (top, left) and SEM (top, right) Image of Anti-Phase Coating 
VCSEL with Cross-Sectional Schematic (bottom)

Single-Polarization VCSEL Motivation
• Optical Polarization Control for VCSELs

Polarization-Controlled IID VCSELs
• High-Power Single-Mode IID VCSELs

• Disorder-Defined Apertures for Single-Polarization

• Polarization-Resolved LIV and OPSR Analysis
Anti-Phase Coating VCSELs

• Anti-Phase Coating Theory and Simulation

• High-Power Single-Mode VCSEL Operation

• Single-Mode, Single-Polarization VCSELs
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Anti-Phase Coating Motivation and Background

• Anti-phase coating deposited atop device induces a spatially varying threshold modal gain higher in periphery 
of VCSEL, suppressing higher order modes and preferentially operating in a single-fundamental mode

• Previous work required complex, multilayer filter due to incomplete mirror in top p-type DBR
• Modest powers achieved of 3.51 mW with a side-mode suppression-ratio (SMSR) of 38.41 dBm (single mode 

> 30 dB, pseudo-single mode >25 dB)

L-I-V and spectral characteristics of VCSEL after each filter 
layer is deposited: (a) (1) Bare VCSEL, (2) Blanket SiO2 layer, 
(3) Blanket TiO2 layer, and (4) TiO2 pillar. (b) The optical 
spectrum indicates single-mode operation with a SMSR of 38.41 
dBm and continues until thermal rollover.

O’Brien, T.  Jr., “High-Power Single-Mode Vertical-Cavity Surface-Emitting Lasers via Impurity-Induced Disordering”, 
Doctoral Dissertation, University of Illinois at Urbana-Champaign. (2017)

Kesler, Benjamin A. Mode control in VCSELs using patterned dielectric anti-phase filters. Diss. 
University of Illinois at Urbana-Champaign, 2017.

Transverse Mode Profile of VCSEL
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VCSEL Standing Wave Pattern

• Baseline structure designed with complete mirror for an in-phase electric field standing wave pattern with 

large amplitude peak overlapping the active region (0 µm)

• Threshold modal gain is minimized for fundamental mode and higher-order modes
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VCSEL DBR Reflectivity
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VCSEL Standing Wave Pattern

• Higher refractive index film further increases threshold modal gain 137% to 296 cm-1 at a thickness of 44 nm

• Visible ripples in standing wave pattern (inset) induced by larger anti-phase wave reflected from surface
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Mode-Control VCSEL Fabrication
Epitaxial Layer Design

• VCSEL Epitaxial Design:
• n-type GaAs Substrate
• 32 n-type AlAs/AlGaAs DBR Pairs
• 5 InGaAs quantum wells
• 20  p-type AlGaAs DBR Pairs
• 25 nm Al0.98GaAs layer for oxidation

• Multiple InGaAs quantum-wells provide high 
differential gain

• AlAs bottom DBR layers provide additional 
thermal conductance for heat dissipation

Authors are grateful to Quesnell Hartmann and Toby Garrod for 
growing VCSEL design at II-VI EpiWorks in Champaign, IL
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Mode-Control VCSEL Fabrication
VCSEL Anti-Phase Coating

• Anti-phase coating is deposited using electron-
beam evaporation and a photolithographic lift-
off process
• Magnitude of e-beam current determines 

magnitude refractive index of film

• Quartz witness sample loaded alongside VCSEL 
die for refractive index measurement 

• Silicon film is characterized by stylus profiler and 
spectroscopic ellipsometry for thickness and 
index of refraction, respectively
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• Low refractive index value of 2.2 at operating wavelength (λ= 850 nm) compared to literature values ~3.8 [9] 
influences output of device
• Mode suppression capabilities are lower compared to higher index film

Silicon Film Optical Constants

n = 2.2  
λ = 850 nm



0 1 2 3 4 5 6 7 8

Current (mA)

0

3

6

9

12

15

18

Vo
lta

ge
 (V

)

0

2

4

6

8

10

12

Li
gh

t (
m

W
)

No Coating

Anti-Phase Coating

Aperture Diameter

43University of Illinois at Urbana-Champaign (UIUC)

Baseline VCSEL
Geometry

• Mesa Size: 25 µm
• Oxide Aperture: 3 µm
• Anti-Phase Coating 

Aperture: N/A 

Baseline VCSEL
 Performance

• Ith= 0.40 mA
• Peak Single-Mode Output 

Power: 4.9 mW
• Thermal Rollover Current: 

5.36 mA

High-Power VCSEL Performance
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Optical Spectra at 2 mA and SMSR = 38.02 dB

845 850 855 860

-40
-20

0
Optical Spectra at 3 mA and SMSR = 39.63 dB

845 850 855 860
-40
-20

0
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Optical Spectra at 5 mA and SMSR = 38.21 dB
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CW RT Operation
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High-Power VCSEL Performance
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Anti-Phase VCSEL
Geometry

• Mesa Size: 25 µm
• Oxide Aperture: 3 µm
• Anti-Phase Coating 

Aperture: 0 µm 

Anti-Phase VCSEL 
Performance

• Ith= 0.53 mA
• Peak Single-Mode Output 

Power: 6.61 mW
• Thermal Rollover Current: 

6.5 mA 

CW RT Operation
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High-Power VCSEL Performance

845 850 855 860
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Anti-Phase VCSEL
Geometry

• Mesa Size: 25 µm
• Oxide Aperture: 3 µm
• Anti-Phase Coating 

Aperture: 2 µm

Anti-Phase VCSEL 
Performance

• Ith= 0.48 mA
• Peak Single-Mode Output 

Power: 10.2 mW
• Thermal Rollover Current: 

6.2 mA 

CW RT Operation



• Reduction of DBR reflectivity increases total cavity 
loss, increasing threshold current
• Less internal absorption contributes leads to less  

heating and delay of thermal rollover
• Higher differential quantum efficiency and slope 

efficiency 
• S.E. = 2.6 W/A -> DQE = 171%
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Wall-Plug and Slope Efficiency
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• Increasing the e-beam current (and therefore deposition rate) leads to a more robust film with a larger 
refractive index of 3.89 at 850 nm

• More enhanced film leads to increased capability of mode-control in inherently multimode VCSELs

Enhanced Silicon Film Optical Constants

n = 3.89  
λ = 850 nm

• Increasing the e-beam current (and therefore deposition rate) leads to a more robust film with a larger 
refractive index of 3.89 at 850 nm
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Enhanced APC VCSEL Performance
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Baseline VCSEL
Geometry

• Mesa Size: 26 µm
• Oxide Aperture: 4 µm
• Anti-Phase Coating 

Aperture: N/A

Baseline VCSEL 
Performance

• Ith= 0.41 mA
• Peak Single-Mode 

Output Power: N/A
• Thermal Rollover 

Current: 8.28 mA
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Enhanced APC VCSEL Performance
Anti-Phase VCSEL

Geometry

• Mesa Size: 26 µm
• Oxide Aperture: 4 µm
• Anti-Phase Coating 

Aperture: 2 µm

Anti-Phase VCSEL 
Performance

• Ith= 1.06 mA
• Peak Single-Mode 

Output Power: N/A
• Thermal Rollover 

Current: 9.26 mA
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Enhanced APC VCSEL Performance
Anti-Phase VCSEL

Geometry

• Mesa Size: 26 µm
• Oxide Aperture: 4 µm
• Anti-Phase Coating 

Aperture: 4 µm

Anti-Phase VCSEL 
Performance

• Ith= 0.62 mA
• Peak Single-Mode 

Output Power: 7.78 mW 
• Thermal Rollover 

Current: 9.08 mA
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Polarization Control via Anti-Phase Coating

• With a slightly elliptical anti-phase coating aperture, undesired polarization state is suppressed without 
undesired encroachment onto fundamental transverse mode, resulting in 3 mW of output power

• Orthogonal-polarization suppression ratio (OPSR) of 20 dB measured at 6mA, achieving single-polarization 
operation

• SMSR of 30.8 dB measured, indicating simultaneous single-mode operation
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5µm active region



0 2 4 6 8 10

Current (mA)

0

5

10

15

20

25

O
PS

R
 (d

B
)

OPSR of Elliptical Aperture VCSEL (X,Y)=(4,4.5) m

52University of Illinois at Urbana-Champaign (UIUC)

Polarization Control via Anti-Phase Coating
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• With a slightly elliptical anti-phase coating aperture, undesired polarization state is suppressed without 
undesired encroachment onto fundamental transverse mode, resulting in 3 mW of output power

• Orthogonal-polarization suppression ratio (OPSR) of 20 dB measured at 6mA, achieving single-polarization 
operation

• SMSR of 30.8 dB measured, indicating simultaneous single-mode operation

5µm active region
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Polarization Control via Anti-Phase Coating
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• With a slightly elliptical anti-phase coating aperture, undesired polarization state is suppressed without 
undesired encroachment onto fundamental transverse mode, resulting in 3 mW of output power

• Orthogonal-polarization suppression ratio (OPSR) of 20 dB measured at 6mA, achieving single-polarization 
operation

• SMSR of 30.8 dB measured, indicating simultaneous single-mode operation

5µm active region
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Summary and Outlook

• Introduced the design and fabrication of VCSELs utilizing the additive high-refractive index anti-phase coating
• Achieved high-power single-mode operation in inherently single-mode and multi-mode 850 nm VCSELs
• Achieved single-mode, single-polarization VCSEL operation in accordance with the year 1 and year 2 

tasks/milestones proposed in current block-gift grant
• Will apply knowledge learned to ongoing efforts to design and fabricate 2D-VCSEL arrays operating in a single-

mode, single-polarization state
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Near- and Far-Field Imaging

• Near-field pattern of single-mode VCSEL imaged via CMOS imaging camera with OD9 attenuator
• Via a Fourier transform of the near-field pattern, the far-field pattern of the device can be theoretically 

calculated

Fourier Transform
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2D-VCSEL Arrays 

• Single-discrete, 5- and 9-VCSEL arrays are designed for processing, with mask designs seen above 
• Similar process flow to standard discrete VCSEL fabrication, main difference includes coverage and size of top 

p-metal contact
• Current efforts have resulted in spontaneous emission only due to large oxide apertures and pinched off 

disorder-defined apertures



• IID VCSELs for single-polarization single-mode 
operation
• Tailor oxidation/disordering rate to encroach 

further onto higher-order modes, suppressing 
their ability to lase

• 2-D single-mode single-polarization VCSEL arrays 
utilizing both polarization-state suppression 
techniques
• Fine-tune IID fabrication steps to achieve lasing in 

2D-arrays
• Begin array fabrication utilizing anti-phase coating
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Next Steps for Block-Gift Grant
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