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Advantages of 4H-SiC Material

Electric field
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Advantages of 4H-SiC Power MOSFETs

Demystifying SiC MOSFETs challenges - Power Electronics News

https://www.powerelectronicsnews.com/demystifying-sic-mosfets-challenges/
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Motivation

1. Gate Oxide Early Failure

2. Weak Short Circuit 

Ruggedness

Reliability Issues

➢ 2%-3% failure of SiC MOSFETs in EV inverters in the field.

➢ Develop effective screening approach to identify 

SiC MOSFETs with shorter SCWT.

➢ Develop effective screening approach to reduce 

the probability of extrinsic failures.



1. Analysis and Optimization of Screening Techniques

2. A Non-destructive Short Circuit Withstand Time Screening Methodology 
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Major Challenge of SiC MOSFETs in EVs

➢Gate oxide failure: Higher risk for early GOX breakdown

➢EV requirement: Gate oxide lifetime >> 20 years at 150℃



Origin of Early Failures ⸺ Oxide Thinning Model 
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[1] Aichinger et al. 2020. IRPS

Substrate defects
particles

process variations

Extrinsic defect → Effective oxide thickness     → Locally electric field     → Early breakdown

➢ The individual devices with large extrinsic defect density have a high failure probability.



Purpose

➢ Disadvantage of burn-in

❖ Time-consuming

❖ Large Vth shift

Package-Level 

Burn-in

Long Stress Time

Conventional

Screening

Technology

➢ Function of burn-in

❖ Devices with extrinsic fail + Devices without critical extrinsic pass

➢ Objective 

❖ Not degrade device performance (Threshold voltage, On-resistance, Interface 

defect, and Oxide intrinsic lifetime)

❖ Improve efficiency (Increase voltage during Burn-in)
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➢ Introduction

➢ Impact of Burn-in Techniques on SiC MOSFETs

o Effects of Burn-in on the Performance of SiC MOSFETs

o Effects of Burn-in on the Interface States of SiC MOSFETs

➢Optimized Burn-in Techniques

o Burn-in Technique based on the Critical Stress Time

o Pulse-mode Burn-in Technique

Analysis and Optimization of Screening Techniques
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Test Procedure

ΔVth = Vth−post − Vth−pre

ΔRon = Ron−post − Ron−pre

ΔHysteresis = Hysteresispost − Hysteresispre

Degradation Rate (DR) =Δ / initial value

Vth

Ron

Hysteresis

@Id=0.01uA
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Large Threshold Voltage Shift

The large 𝐕𝐭𝐡 shift 

➢ A large number of electrons being injected and subsequently trapped by pre-

existing defects at or near the interface.

Burn-in stress time is 10 hours

➢ An increase in the Dit during the burn-in process
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On-resistance Increase

❖ Electron trapping results in positive Vth shift and a reduction in carrier mobility, thereby 

increasing the on-resistance.
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Hysteresis Increase

New defects generate
Defect generation 

exacerbate the Vth shift

Electrons 

trapped in pre-

existing defects
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➢ Introduction

➢ Impact of Burn-in Techniques on SiC MOSFETs

o Effects of Burn-in on the Performance of SiC MOSFETs

o Effects of Burn-in on the Interface States of SiC MOSFETs

➢Optimized Burn-in Techniques

o Burn-in Technique based on the Critical Stress Time

o Pulse-mode Burn-in Technique

Analysis and Optimization of Screening Techniques
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Test Procedure for Transfer Curves

Transfer curve in the 
subthreshold region → Interface 

state density (Dit)
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Interface Defects Generation Under High-Eox Stress

❖ No degradation on interface state. ❖ Interface Defects Generation.
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➢Optimized Burn-in Techniques

o Burn-in Technique based on the Critical Stress Time

o Pulse-mode Burn-in Technique
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Identify Critical Stress Time

𝐄𝐨𝐱 at 150℃ Critical time

7.5 MV/cm < 1000 s

8 MV/cm < 100 s

9 MV/cm < 5 s

Nit = න
Ecs−ET0

Ecs−ET1

DitdET

Number of traps

❖ The Recommended Burn-in Conditions can avoid the increase of Dit during the burn-in process.
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Effectiveness of Burn-in based on the Critical Stress Time
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No Degradation in Oxide Intrinsic Lifetime

❖ Recommended burn-in technique does not have an obvious negative impact on the 

gate oxide intrinsic lifetime of the SiC MOSFETs. 
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o Burn-in Technique based on the Critical Stress Time
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Analysis and Optimization of Screening Techniques
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Pulse-mode Burn-in Setup

Transfer Test
Vgs=0~15V

Burn-in Stress
Vg= -5 / Eoxtox
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Applying a Negative Voltage Facilitates Recovery of Vth

➢ The holes accumulated in the valence band 

are captured by oxide traps.

➢ The captured electrons under positive voltage 

tunnel back into the conduction band.

~0.15 V

~1 V

Positive Stress Time= Stress Time × Duty Ratio
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Effect of Burn-in

Eox

(MV/cm)

Burn-in

mode

Time

(s)

Vth

(%)

Ron

 (%)

Hy

(%)

t63%

(h)

7.5
DC

1000 5.8 0.6 4.5 58.3

2000 8.2 1.3 9.2 53.6 

Pulse 4000 0.5 1.3 3.8 52.7 

8.0
DC

100 4.9 0.5 6.6 49.4 

500 10.3 2 21.7 47.3 

Pulse 1000 0.6 0.05 0.7 45.0 

9.0
DC

5 5.6 0.7 5.2 54.3 

20 15.4 2.8 47.8 45.3 

Pulse 40 0.7 0.08 7.2 67.5 

❖ The pulse-mode burn-in technique allows the device to be subjected to positive gate stress for a 

longer period of time while maintaining the non-degradation of the characteristics.



Conclusions and Outlook

• Aggressive Burn-in Effects on Gate Oxide: Aggressive burn-in treatments lead to electron accumulation in the 

gate oxide under positive gate stress and increase interface state defects at the SiC/SiO2 interface.

• Critical Stress Time: For different screening electric fields, setting appropriate critical stress times and stopping 

stress before excessive charge injection into SiO2 can prevent increased interface state defects.

• Pulse-Model Burn-in: Using pulse-model burn-in minimizes electron trapping due to positive gate stress, 

reducing positive threshold voltage​ shift. This allows SiC MOSFETs to undergo extended screening without 

significant performance degradation

• Future Work: Select a large batch of samples to validate the screening efficiency
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1. Analysis and Optimization of Screening Techniques
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Outline
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❑Background and Motivation
• Short Circuit Failure Basic

• SiC MOSFET vs Si IGBT Short Circuit Withstand Time

• SCWT Variation in Commercial SiC 1.2kV Planar Devices 

❑Experiment Procedure and Samples
• Short Circuit Test Setup

• Device Details

❑ Novel Short Circuit Screening Methodology

❑ Summary
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Short Circuit Failure Basic

[1] Wang, Z., Tong, C. & Huang, W. Short-circuit protection method for medium-voltage SiC MOSFET based on gate–source voltage detection. J. Power Electron. 20, 1066–1075 (2020). 

Type 2: Fault Under Load (FUL) Type 1: Hard Switching Fault (HSF) 
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𝑅𝐶𝐻 ≈
𝐿𝑐ℎ

𝑊

𝑡𝑜𝑥

𝜇𝑛𝜀𝑆𝑖𝑂2
(𝑉𝐺𝑆 − 𝑉𝑡ℎ) 

[2]

[2] Wang, Jun, and Xi Jiang. "Review and analysis of SiC MOSFETs’ ruggedness and reliability." IET Power Electronics 13, no. 3 (2020): 445-455.

SiC MOSFET vs Si IGBT Short Circuit Withstand Time
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SCWT Variation in Commercial SiC 1.2kV Planar Devices 

• Channel misalignment causes the variation in SCWT [3].
[3] S. Nayak et al., "Non-isothermal simulation of SiC DMOSFET short circuit capability," Japanese Journal of Applied Physics, vol. 61, no. 6, 2022.
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Short Circuit Test Setup
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• VGS-on = 20V

• VGS-off = 0V

• VDS = 800V

• tpulse-start = 0.5µs followed by Δtpulse = 0.1µs 

until failure.
Gate DriverDSP 

Board

Signal 

Transmission 

Board



Device Details
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Vendor Vendor D Vendor F

Device Type Planar Planar

Rated Voltage (kV) 1.2 1.2

Rated Current (A) 20 7.6

Drain-Source On Resistance (mΩ) 189 350

Number of Devices 30 23
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Screening Using Traditional Static Parameters

No direct correlation can be established.



37

Novel Short Circuit Screening Methodology
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Step 1: Pretest
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Variation of Threshold Voltage and On-Resistance

Threshold Voltage: 

Linear Extrapolation 

Method

VDS = 100mV

On Resistance: 

VGS = 20V; VDS = 1.5V
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Step 2: Determine the tinit
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tinit Determination

• With the increase in tpulse tail current 

increases.

• Tail current results in thermal runaway.

• tinit should show the tail current effect.

• tinit < tscmin 

• tinit = tscmin-0.2µs

[4] M. Zhang et al.,"Short Circuit Protection of Silicon Carbide MOSFETs: Challenges, Methods, and Prospects," in IEEE Transactions on Power Electronics, vol. 39, no. 10, pp. 13081-13095, Oct. 2024

[4]
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Step 3: Extraction of Screening Parameter
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Understanding the Drain Current Behaviour

tinit= 1.5µs <tsc

• Reduction in Drain current after Ipeak indicates the reduction in mobility due to high temperature.

• 𝐬𝐥𝐨𝐩𝐞 =
𝐈𝐩𝐞𝐚𝐤−𝐈𝐦𝐢𝐧

∆𝐭
  can be correlated with this mobility reduction effect. 
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Psc Distribution for Vendor D and Vendor F

• 𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫 (𝐏𝐬𝐜) =
𝐈𝐩𝐞𝐚𝐤

𝐬𝐥𝐨𝐩𝐞
 where slope =

Ipeak−Imin

∆t
.

• For tsc ≥ 1.9µs  Psc for Vendor D ≤ 1.8s  and Vendor F  ≥ 2.4s. 
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Step 4: Influence of Screening on Device Parameters
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Vth, Ron, Igss, and IDSS Variation due to Screening

Vendor
Vth (V) Ron (mΩ) (VGS = 20V & VDS = 1.5V) Igss (nA) at VGS = 30V

Pretest Post-screening Pretest Post-screening Pretest Post-screening

D 7.2 7.2 116.25 116.25 0.081 0.051

F 6.11 6.12 318.2 321.1 27.5 27.1
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Room Temperature Dit Study

• Dit extracted using the subthreshold slope method at room temperature (RT=300K) [5].

No degradation of devices due to screening. 

[5] S. Yu, M. H. White and A. K. Agarwal, "Experimental Determination of Interface Trap Density and Fixed Positive Oxide Charge in Commercial 4H-SiC Power MOSFETs," in IEEE Access, vol. 9, pp. 

149118-149124, 2021.
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Summary

• Commercial SiC MOSFETs show SCWT variation across the batch with the same 

lot number due to slight channel misalignment.

• To reliably remove devices with lower SCWT, a novel screening parameter Psc(s) 

has been introduced that captures the temperature-dependent mobility. 

• To successfully remove devices with tsc  ≤ 1.9µs calibrated Psc for Vendor D ≤ 1.8s  

and Vendor F  ≥ 2.4s.

• The proposed screening method can remove devices with lower SCWT without 

damaging the reliable ones.

Reduces the risk of failure in the field.



Thank You for Your Attention!

Any Questions?
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