

Foundation

Reliability and Ruggedness of Commercial SiC Power MOSFETs

Limeng Shi Monikuntala Bhattacharya

Advisor : Prof. Anant K. Agarwal

The Ohio State University Department of Electrical and Computer Engineering Center for High Performance Power Electronics

THE OHIO STATE UNIVERSITY

Advantages of 4H-SiC Material

Advantages of 4H-SiC Power MOSFETs

Demystifying SiC MOSFETs challenges - Power Electronics News

> 2%-3% failure of SiC MOSFETs in EV inverters in the field.

- 1. Gate Oxide Early Failure
- 2. Weak Short Circuit Ruggedness

- Develop effective screening approach to reduce the probability of extrinsic failures.
- Develop effective screening approach to identify SiC MOSFETs with shorter SCWT.

1. Analysis and Optimization of Screening Techniques

2. A Non-destructive Short Circuit Withstand Time Screening Methodology

Topic

Major Challenge of SiC MOSFETs in EVs

- Gate oxide failure: Higher risk for early GOX breakdown
- > EV requirement: Gate oxide lifetime >> 20 years at 150°C

Origin of Early Failures — Oxide Thinning Model

Substrate defects particles process variations

 $E_{ox} = \frac{V_{ox}}{t_{ox}} = \frac{V_{ox}}{t_{ox} - \Delta t_{ox}} = \frac{V_{ox}}{t_{eff}}.$ [1] Aichinger et al. 2020. IRPS

Extrinsic defect \rightarrow Effective oxide thickness \rightarrow Locally electric field \rightarrow Early breakdown

> The individual devices with large extrinsic defect density have a high failure probability.

Function of burn-in

- Devices with extrinsic fail + Devices without critical extrinsic pass
- Disadvantage of burn-in
 - Time-consuming
 - ✤ Large V_{th} shift
- > **Objective**
 - Not degrade device performance (Threshold voltage, On-resistance, Interface defect, and Oxide intrinsic lifetime)
 - Improve efficiency (Increase voltage during Burn-in)

Analysis and Optimization of Screening Techniques

> Introduction

Impact of Burn-in Techniques on SiC MOSFETs

- o Effects of Burn-in on the Performance of SiC MOSFETs
- Effects of Burn-in on the Interface States of SiC MOSFETs
- > Optimized Burn-in Techniques
 - o Burn-in Technique based on the Critical Stress Time
 - Pulse-mode Burn-in Technique

Test Procedure

$$\Delta V_{th} = V_{th-post} - V_{th-pre}$$
$$\Delta R_{on} = R_{on-post} - R_{on-pre}$$

Degradation Rate (DR) = Δ / initial value

 Δ Hysteresis = Hysteresis_{post} - Hysteresis_{pre}

Large Threshold Voltage Shift

 E_{ox} (MV/cm) / V_{g} (V)

The large V_{th} shift

- A large number of electrons being injected and subsequently trapped by preexisting defects at or near the interface.
- \succ An increase in the D_{it} during the burn-in process

On-resistance Increase

• Electron trapping results in positive V_{th} shift and a reduction in carrier mobility, thereby increasing the on-resistance.

Hysteresis Increase

Analysis and Optimization of Screening Techniques

> Introduction

Impact of Burn-in Techniques on SiC MOSFETs

Effects of Burn-in on the Performance of SiC MOSFETs

o Effects of Burn-in on the Interface States of SiC MOSFETs

- > Optimized Burn-in Techniques
 - Burn-in Technique based on the Critical Stress Time
 - Pulse-mode Burn-in Technique

Test Procedure for Transfer Curves

Transfer curve in the subthreshold region \rightarrow Interface state density (D_{it})

Interface Defects Generation Under High-*E*_{ox} Stress

✤ No degradation on interface state.

✤ Interface Defects Generation.

Analysis and Optimization of Screening Techniques

> Introduction

Impact of Burn-in Techniques on SiC MOSFETs

- **o** Effects of Burn-in on the Performance of SiC MOSFETs
- Effects of Burn-in on the Interface States of SiC MOSFETs

Optimized Burn-in Techniques

- o Burn-in Technique based on the Critical Stress Time
- Pulse-mode Burn-in Technique

Identify Critical Stress Time

Number of traps

$$N_{it} = \int_{E_{cs} - E_{T0}}^{E_{cs} - E_{T1}} D_{it} dE_{T}$$

E _{ox} at 150°C	Critical time		
7.5 MV/cm	< 1000 s		
8 MV/cm	< 100 s		
9 MV/cm	< 5 s		

The Recommended Burn-in Conditions can avoid the increase of D_{it} during the burn-in process.

Effectiveness of Burn-in based on the Critical Stress Time

No Degradation in Oxide Intrinsic Lifetime 10⁶ W/O stress 0 20 years _{63%} = 59 h W/ 1000 s 7.5 MV/cm stress 10⁵ W/ 100 s 8 MV/cm stress $\beta = 3.36$ (hours) • W/ 5 s 9 MV/cm stress 10^{4} $t_{63\%} = 49.4 \text{ h}$ $\beta = 4.08$ 10^{3}

Recommended burn-in technique does not have an obvious negative impact on the gate oxide intrinsic lifetime of the SiC MOSFETs.

Analysis and Optimization of Screening Techniques

> Introduction

Impact of Burn-in Techniques on SiC MOSFETs

- o Effects of Burn-in on the Performance of SiC MOSFETs
- Effects of Burn-in on the Interface States of SiC MOSFETs

Optimized Burn-in Techniques

- o Burn-in Technique based on the Critical Stress Time
- o Pulse-mode Burn-in Technique

Pulse-mode Burn-in Setup

Applying a Negative Voltage Facilitates Recovery of V_{th}

Positive Stress Time= Stress Time × Duty Ratio

- The holes accumulated in the valence band are captured by oxide traps.
- The captured electrons under positive voltage tunnel back into the conduction band.

Effect of Burn-in

A	TE UN	
OHO OHO		ERSIT
	1870	Ĩ
Contraction of the second	870	4

E _{ox} (MV/cm)	Burn-in mode	Time (s)	∆V _{th} (%)	∆R _{on} (%)	∆Hy (%)	t _{63%} (h)
7.5	DC	1000	5.8	0.6	4.5	58.3
		2000	8.2	1.3	9.2	53.6
	Pulse	4000	0.5	1.3	3.8	52.7
8.0	DC	100	4.9	0.5	6.6	49.4
		500	10.3	2	21.7	47.3
	Pulse	1000	0.6	0.05	0.7	45.0
9.0	DC	5	5.6	0.7	5.2	54.3
		20	15.4	2.8	47.8	45.3
	Pulse	40	0.7	0.08	7.2	67.5

The pulse-mode burn-in technique allows the device to be subjected to positive gate stress for a longer period of time while maintaining the non-degradation of the characteristics.

Conclusions and Outlook

- Aggressive Burn-in Effects on Gate Oxide: Aggressive burn-in treatments lead to electron accumulation in the gate oxide under positive gate stress and increase interface state defects at the SiC/SiO₂ interface.
- Critical Stress Time: For different screening electric fields, setting appropriate critical stress times and stopping

stress before excessive charge injection into SiO₂ can prevent increased interface state defects.

- **Pulse-Model Burn-in**: Using pulse-model burn-in minimizes electron trapping due to positive gate stress, reducing positive threshold voltage shift. This allows SiC MOSFETs to undergo extended screening without significant performance degradation
- Future Work: Select a large batch of samples to validate the screening efficiency

1. Analysis and Optimization of Screening Techniques

2. A Non-destructive Short Circuit Withstand Time Screening Methodology

Topic

Outline

Background and Motivation

- Short Circuit Failure Basic
- SiC MOSFET vs Si IGBT Short Circuit Withstand Time
- SCWT Variation in Commercial SiC 1.2kV Planar Devices

Experiment Procedure and Samples

- Short Circuit Test Setup
- Device Details

□ Novel Short Circuit Screening Methodology

Summary

Outline

Background and Motivation

- Short Circuit Failure Basic
- SiC MOSFET vs Si IGBT Short Circuit Withstand Time
- SCWT Variation in Commercial SiC 1.2kV Planar Devices

Experiment Procedure and Samples

- Short Circuit Test Setup
- Device Details

Novel Short Circuit Screening Methodology

Summary

Short Circuit Failure Basic

Type 1: Hard Switching Fault (HSF)

Type 2: Fault Under Load (FUL)

[1] Wang, Z., Tong, C. & Huang, W. Short-circuit protection method for medium-voltage SiC MOSFET based on gate-source voltage detection. J. Power Electron. 20, 1066–1075 (2020).

29

SiC MOSFET vs Si IGBT Short Circuit Withstand Time

[2] Wang, Jun, and Xi Jiang. "Review and analysis of SiC MOSFETs' ruggedness and reliability." IET Power Electronics 13, no. 3 (2020): 445-455.

SCWT Variation in Commercial SiC 1.2kV Planar Devices

٠

[3] S. Nayak et al., "Non-isothermal simulation of SiC DMOSFET short circuit capability," Japanese Journal of Applied Physics, vol. 61, no. 6, 2022.

Outline

Background and Motivation

- Short Circuit Failure Basic
- SiC MOSFET vs Si IGBT Short Circuit Withstand Time
- SCWT Variation in Commercial SiC 1.2kV Planar Devices

Experiment Procedure and Samples

- Short Circuit Test Setup
- Device Details

Novel Short Circuit Screening Methodology

Summary

Short Circuit Test Setup

Gate Driver

Device Details

OHO		ALL R.SITE
	1870	

Vendor	Vendor D	Vendor F
Device Type	Planar	Planar
Rated Voltage (kV)	1.2	1.2
Rated Current (A)	20	7.6
Drain-Source On Resistance (mΩ)	189	350
Number of Devices	30	23

Outline

Background and Motivation

- Short Circuit Failure Basic
- SiC MOSFET vs Si IGBT Short Circuit Withstand Time
- SCWT Variation in Commercial SiC 1.2kV Planar Devices

Experiment Procedure and Samples

- Short Circuit Test Setup
- Device Details

□ Novel Short Circuit Screening Methodology

Summary

Screening Using Traditional Static Parameters

No direct correlation can be established.

THE OHIO STATE UNIVERSITY

Novel Short Circuit Screening Methodology

Step 1: Pretest

Determine

the t_{init} for most efficient screening for each batch at V_{DS} =800V & V_{GS} =20V Traditional SC Experiment at V_{DS} =800V & V_{GS} =20V from t_{init} till the device explodes at a step of 0.1µs.

Apply

t_{init}

at V_{DS} =800V

&V_{GS}=20V

Measurement of V_{th} , R_{on} , I_{gss} , I_{DSS} , and extraction of D_{it} from the subthreshold part of transfer characteristics to understand the effect of screening on device parameters

Variation of Threshold Voltage and On-Resistance

On Resistance:

$$V_{GS} = 20V; V_{DS} = 1.5V$$

THE OHIO STATE UNIVERSITY

Step 2: Determine the t_{init}

Determine the t_{init}

for most efficient screening for each batch at V_{DS} =800V & V_{GS} =20V **Traditional SC Experiment** at V_{DS} =800V $&V_{GS}$ =20V from t_{init} till the device explodes at a step of 0.1µs.

Apply

t_{init}

at V_{DS} =800V

 $\&V_{GS}=20V$

Measurement of V_{th} , R_{on} , I_{gss} , I_{DSS} , and extraction of D_{it} from the subthreshold part of transfer characteristics to understand the effect of screening on device parameters

40

t_{init} Determination

[4] M. Zhang et al., "Short Circuit Protection of Silicon Carbide MOSFETs: Challenges, Methods, and Prospects," in IEEE Transactions on Power Electronics, vol. 39, no. 10, pp. 13081-13095, Oct. 2024

THE OHIO STATE UNIVERSITY

41

Step 3: Extraction of Screening Parameter

Determine

for most efficient screening for each batch at $V_{DS}=800V$ & $V_{GS}=20V$

Traditional SC Experiment at V_{DS} =800V & V_{GS} =20V from t_{init} till the device explodes at a step of 0.1µs.

Extraction of **Parameter** P_{sc}

Measurement of V_{th} , R_{on} , I_{gss} , I_{DSS} , and extraction of D_{it} from the subthreshold part of transfer characteristics to understand the effect of screening on device parameters

Understanding the Drain Current Behaviour

- Reduction in Drain current after I_{peak} indicates the reduction in mobility due to high temperature.
- **slope** = $\frac{I_{peak} I_{min}}{\Delta t}$ can be correlated with this mobility reduction effect.

P_{sc} **Distribution for Vendor D and Vendor F**

- **Parameter** (**Psc**) = $\frac{I_{peak}}{slope}$ where slope = $\frac{I_{peak} I_{min}}{\Delta t}$.
- For $t_{sc} \ge 1.9 \mu s$ P_{sc} for Vendor D $\le 1.8 s$ and Vendor F $\ge 2.4 s$.

Step 4: Influence of Screening on Device Parameters

Determine

the t_{init} for most efficient screening for each batch at V_{DS} =800V & V_{GS} =20V Traditional SC Experiment at V_{DS} =800V & V_{GS} =20V from t_{init} till the device explodes at a step of 0.1µs.

Apply

t_{init}

at V_{DS} =800V

&V_{GS}=20V

parameters

45

$V_{th},\,R_{on},\,I_{gss},\,and\,\,I_{DSS}$ Variation due to Screening

Vendor -	V _{th} (V)		$R_{on} (m\Omega) (V_{GS} = 20V \& V_{DS} = 1.5V)$		Igss (nA) at $V_{GS} = 30V$	
	Pretest	Post-screening	Pretest	Post-screening	Pretest	Post-screening
D	7.2	7.2	116.25	116.25	0.081	0.051
F	6.11	6.12	318.2	321.1	27.5	27.1

Room Temperature D_{it} Study

D_{it} extracted using the subthreshold slope method at room temperature (RT=300K) [5].
No degradation of devices due to screening.

[5] S. Yu, M. H. White and A. K. Agarwal, "Experimental Determination of Interface Trap Density and Fixed Positive Oxide Charge in Commercial 4H-SiC Power MOSFETs," in *IEEE Access*, vol. 9, pp. 149118-149124, 2021.

Outline

Background and Motivation

- Short Circuit Failure Basic
- SiC MOSFET vs Si IGBT Short Circuit Withstand Time
- SCWT Variation in Commercial SiC 1.2kV Planar Devices

Experiment Procedure and Samples

- Short Circuit Test Setup
- Device Details

Novel Short Circuit Screening Methodology

Summary

Summary

- Commercial SiC MOSFETs show SCWT variation across the batch with the same lot number due to slight channel misalignment.
- To reliably remove devices with lower SCWT, a novel screening parameter $P_{sc}(s)$ has been introduced that captures the temperature-dependent mobility.
- To successfully remove devices with $t_{sc} \le 1.9\mu s$ calibrated P_{sc} for Vendor $D \le 1.8s$ and Vendor $F \ge 2.4s$.
- The proposed screening method can remove devices with lower SCWT without damaging the reliable ones.

Reduces the risk of failure in the field.

Thank You for Your Attention!

Any Questions?

THE OHIO STATE UNIVERSITY