COHERENT / IFVI

Foundation

Reliability and Ruggedness of Commercial SiC Power MOSFETs

Limeng Shi Monikuntala Bhattacharya

Advisor : Prof. Anant K. Agarwal

The Ohio State University Department of Electrical and Computer Engineering Center for High Performance Power Electronics

THE OHIO STATE UNIVERSITY

1

Advantages of 4H-SiC Material

Advantages of 4H-SiC Power MOSFETs

[Demystifying SiC MOSFETs challenges -](https://www.powerelectronicsnews.com/demystifying-sic-mosfets-challenges/) Power Electronics News

➢ 2%-3% failure of SiC MOSFETs in EV inverters in the field.

- 1. Gate Oxide Early Failure
- 2. Weak Short Circuit Ruggedness

- ➢ Develop effective screening approach to reduce the probability of extrinsic failures.
- \triangleright Develop effective screening approach to identify SiC MOSFETs with shorter SCWT.

1. Analysis and Optimization of Screening Techniques

2. A Non-destructive Short Circuit Withstand Time Screening Methodology

Topic

#5

Major Challenge of SiC MOSFETs in EVs

- ➢**Gate oxide failure: Higher risk for early GOX breakdown**
- ➢**EV requirement: Gate oxide lifetime >> 20 years at 150**℃

Origin of Early Failures — Oxide Thinning Model

Substrate defects particles process variations

 $E_{ox} = \frac{V_{ox}}{t_{ox}} = \frac{V_{ox}}{t_{ox} - \Delta t_{ox}} = \frac{V_{ox}}{t_{eff}}.$ [1] Aichinger et al. 2020. IRPS

$$
Exttrinsic defect \rightarrow Effective oxide thickness \longrightarrow Locally electric field \longrightarrow Early breakdown
$$

➢ **The individual devices with large extrinsic defect density have a high failure probability.**

➢ **Function of burn-in**

- ❖ **Devices with extrinsic fail + Devices without critical extrinsic pass**
- ➢ **Disadvantage of burn-in**
	- ❖ **Time-consuming**
	- ❖ **Large Vth shift**
- ➢ **Objective**
	- ❖ **Not degrade device performance (Threshold voltage, On-resistance, Interface defect, and Oxide intrinsic lifetime)**
	- ❖ **Improve efficiency (Increase voltage during Burn-in)**

Analysis and Optimization of Screening Techniques

➢Introduction

➢Impact of Burn-in Techniques on SiC MOSFETs

Effects of Burn-in on the Performance of SiC MOSFETs

Effects of Burn-in on the Interface States of SiC MOSFETs

➢Optimized Burn-in Techniques

- Burn-in Technique based on the Critical Stress Time
- Pulse-mode Burn-in Technique

Test Procedure

$$
\Delta V_{th} = V_{th-post} - V_{th-pre}
$$

$$
\Delta R_{on} = R_{on-post} - R_{on-pre}
$$

Degradation Rate (DR) =Δ / initial value

 Δ Hysteresis = Hysteresis_{post} − Hysteresis_{pre}

Large Threshold Voltage Shift

The large shift

- ➢ A large number of electrons being injected and subsequently trapped by preexisting defects at or near the interface.
- \triangleright An increase in the D_{it} during the burn-in process

On-resistance Increase

❖ Electron trapping results in positive V_{th} shift and a reduction in carrier mobility, thereby increasing the on-resistance.

Hysteresis Increase

Analysis and Optimization of Screening Techniques

➢Introduction

➢Impact of Burn-in Techniques on SiC MOSFETs

Effects of Burn-in on the Performance of SiC MOSFETs

Effects of Burn-in on the Interface States of SiC MOSFETs

- ➢Optimized Burn-in Techniques
	- Burn-in Technique based on the Critical Stress Time
	- Pulse-mode Burn-in Technique

Test Procedure for Transfer Curves

#15

Interface Defects Generation Under High- E_{ox} Stress

❖ No degradation on interface state. ❖ Interface Defects Generation.

Analysis and Optimization of Screening Techniques

➢Introduction

- ➢Impact of Burn-in Techniques on SiC MOSFETs
	- Effects of Burn-in on the Performance of SiC MOSFETs
	- Effects of Burn-in on the Interface States of SiC MOSFETs

➢Optimized Burn-in Techniques

- Burn-in Technique based on the Critical Stress Time
- o Pulse-mode Burn-in Technique

Identify Critical Stress Time

Number of traps

$$
N_{it} = \int_{E_{cs}-E_{To}}^{E_{cs}-E_{T1}} D_{it} dE_T
$$

❖ The Recommended Burn-in Conditions can avoid the increase of D_{it} during the burn-in process.

Effectiveness of Burn-in based on the Critical Stress Time

No Degradation in Oxide Intrinsic Lifetime

❖ Recommended burn-in technique does not have an obvious negative impact on the gate oxide intrinsic lifetime of the SiC MOSFETs.

Analysis and Optimization of Screening Techniques

\triangleright Introduction

➢Impact of Burn-in Techniques on SiC MOSFETs

- Effects of Burn-in on the Performance of SiC MOSFETs
- Effects of Burn-in on the Interface States of SiC MOSFETs

➢Optimized Burn-in Techniques

- o Burn-in Technique based on the Critical Stress Time
- Pulse-mode Burn-in Technique

Pulse-mode Burn-in Setup

Applying a Negative Voltage Facilitates Recovery of V_{th}

Positive Stress Time= Stress Time × Duty Ratio

- \triangleright The holes accumulated in the valence band are captured by oxide traps.
- ➢ The captured electrons under positive voltage tunnel back into the conduction band.

Effect of Burn-in

❖ The pulse-mode burn-in technique allows the device to be subjected to positive gate stress for a longer period of time while maintaining the non-degradation of the characteristics.

Conclusions and Outlook

- **Aggressive Burn-in Effects on Gate Oxide**: Aggressive burn-in treatments lead to electron accumulation in the gate oxide under positive gate stress and increase interface state defects at the SiC/SiO₂ interface.
- **Critical Stress Time**: For different screening electric fields, setting appropriate critical stress times and stopping

stress before excessive charge injection into $SiO₂$ can prevent increased interface state defects.

- **Pulse-Model Burn-in**: Using pulse-model burn-in minimizes electron trapping due to positive gate stress, reducing positive threshold voltage shift. This allows SiC MOSFETs to undergo extended screening without significant performance degradation
- **Future Work:** Select a large batch of samples to validate the screening efficiency

1. Analysis and Optimization of Screening Techniques

2. A Non-destructive Short Circuit Withstand Time Screening Methodology

Topic

Outline

❑**Background and Motivation**

- Short Circuit Failure Basic
- SiC MOSFET vs Si IGBT Short Circuit Withstand Time
- SCWT Variation in Commercial SiC 1.2kV Planar Devices

❑**Experiment Procedure and Samples**

- Short Circuit Test Setup
- Device Details

❑ **Novel Short Circuit Screening Methodology**

❑ **Summary**

Outline

❑**Background and Motivation**

- Short Circuit Failure Basic
- SiC MOSFET vs Si IGBT Short Circuit Withstand Time
- SCWT Variation in Commercial SiC 1.2kV Planar Devices

❑**Experiment Procedure and Samples**

- Short Circuit Test Setup
- Device Details

❑ **Novel Short Circuit Screening Methodology**

❑ **Summary**

Short Circuit Failure Basic

Type 1: Hard Switching Fault (HSF) Type 2: Fault Under Load (FUL)

[1] Wang, Z., Tong, C. & Huang, W. Short-circuit protection method for medium-voltage SiC MOSFET based on gate–source voltage detection. J. Power Electron. 20, 1066–1075 (2020).

29

SiC MOSFET vs Si IGBT Short Circuit Withstand Time

[2] Wang, Jun, and Xi Jiang. "Review and analysis of SiC MOSFETs' ruggedness and reliability." *IET Power Electronics* **13, no. 3 (2020): 445-455.**

SCWT Variation in Commercial SiC 1.2kV Planar Devices

• Channel misalignment causes the variation in SCWT [3].

[3] S. Nayak *et al.***, "Non-isothermal simulation of SiC DMOSFET short circuit capability,"** *Japanese Journal of Applied Physics,* **vol. 61, no. 6, 2022.**

Outline

❑**Background and Motivation**

- Short Circuit Failure Basic
- SiC MOSFET vs Si IGBT Short Circuit Withstand Time
- SCWT Variation in Commercial SiC 1.2kV Planar Devices

❑**Experiment Procedure and Samples**

- Short Circuit Test Setup
- Device Details

❑ **Novel Short Circuit Screening Methodology**

❑ **Summary**

Short Circuit Test Setup

File Court

Device Details

Outline

❑**Background and Motivation**

- Short Circuit Failure Basic
- SiC MOSFET vs Si IGBT Short Circuit Withstand Time
- **SCWT Variation in Commercial SiC 1.2kV Planar Devices**

❑**Experiment Procedure and Samples**

- Short Circuit Test Setup
- Device Details

❑ **Novel Short Circuit Screening Methodology**

❑ **Summary**

Screening Using Traditional Static Parameters

No direct correlation can be established.

Novel Short Circuit Screening Methodology

Step 1: Pretest

Determine

the t_{init} for most efficient screening for each batch at $V_{DS} = 800V$ $&V_{GS}=20V$

Traditional SC Experiment at $V_{DS} = 800V$ & V_{GS} =20V from t_{init} till the device explodes at a step of $0.1 \mu s$.

Apply

 t_{init}

at $V_{DS} = 800V$

 $&V_{GS}=20V$

Variation of Threshold Voltage and On-Resistance

Threshold Voltage: Linear Extrapolation Method $V_{DS} = 100mV$

On Resistance:

$$
V_{GS} = 20V; V_{DS} = 1.5V
$$

Step 2: Determine the t

Determine the t_{init}

for most efficient screening for each batch at $V_{DS} = 800V$ $&V_{GS}=20V$

Traditional SC Experiment at $V_{DS} = 800V$ & V_{GS} =20V from t_{init} till the device explodes at a step of $0.1 \mu s$.

Parameter $\mathbf{P}_{\rm sc}$

40

tinit Determination

[4] M. Zhang et al.,"Short Circuit Protection of Silicon Carbide MOSFETs: Challenges, Methods, and Prospects," in IEEE Transactions on Power Electronics, vol. 39, no. 10, pp. 13081-13095, Oct. 2024

THE OHIO STATE UNIVERSITY

41

Step 3: Extraction of Screening Parameter

Traditional SC Experiment at $V_{DS} = 800V$ & V_{GS} =20V from t_{init} till the device explodes at a step of $0.1 \mu s$.

Extraction of Parameter P_{sc}

THE OHIO STATE UNIVERSITY

Understanding the Drain Current Behaviour

- Reduction in Drain current after I_{peak} indicates the reduction in mobility due to high temperature.
- slope $=$ I_{peak}-I_{min} ∆ can be correlated with this mobility reduction effect.

43

Psc Distribution for Vendor D and Vendor F

• **For** $t_{sc} \ge 1.9 \mu s$ **P**_{sc} for **Vendor** $D \le 1.8 s$ and **Vendor** $F \ge 2.4 s$.

Step 4: Influence of Screening on Device Parameters

Determine

the t_{init} for most efficient screening for each batch at $V_{DS} = 800V$ $&V_{GS}=20V$

Traditional SC Experiment at $V_{DS} = 800V$ & V_{GS} =20V from t_{init} till the device explodes at a step of $0.1 \mu s$.

Apply

 t_{init}

at $V_{DS} = 800V$

 $&V_{GS}=20V$

Vth, Ron, Igss, and IDSS Variation due to Screening

Room Temperature D_{it} Study

• D_{it} extracted using the subthreshold slope method at room temperature (RT=300K) [5]. **No degradation of devices due to screening.**

[5] S. Yu, M. H. White and A. K. Agarwal, "Experimental Determination of Interface Trap Density and Fixed Positive Oxide Charge in Commercial 4H-SiC Power MOSFETs," in *IEEE Access***, vol. 9, pp. 149118-149124, 2021.**

Outline

❑**Background and Motivation**

- Short Circuit Failure Basic
- SiC MOSFET vs Si IGBT Short Circuit Withstand Time
- SCWT Variation in Commercial SiC 1.2kV Planar Devices

❑**Experiment Procedure and Samples**

- Short Circuit Test Setup
- Device Details

❑ **Novel Short Circuit Screening Methodology**

❑ **Summary**

Summary

- Commercial SiC MOSFETs show SCWT variation across the batch with the same lot number due to slight channel misalignment.
- To reliably remove devices with lower SCWT, a novel screening parameter $P_{sc}(s)$ has been introduced that captures the temperature-dependent mobility.
- To successfully remove devices with $t_{sc} \le 1.9\mu s$ calibrated P_{sc} for Vendor $D \le 1.8s$ and Vendor $F \geq 2.4$ s.
- The proposed screening method can remove devices with lower SCWT without damaging the reliable ones.

Reduces the risk of failure in the field.

Thank You for Your Attention!

Any Questions?