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 Improve/simplify circuit realization with fewer higher voltage/current 
devices/modules

 Reduce energy storage requirements and passive component sizes

Motivation: higher voltage, current, and speed discrete devices

C. Ó. Mathúna, N. Wang, S. Kulkarni and S. Roy, "Review of Integrated Magnetics for Power Supply on Chip (PwrSoC)," in IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4799-4816, Nov. 2012



Ultra-Wide-Bandgap semiconductors: diamond’s material advantages

Donato, N., et al. “Diamond Power Devices: State of the Art, Modelling, Figures of Merit and Future Perspective.” Journal of Physics., vol. 53, no. 9, 2020
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Reduced switching 
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Higher operation 
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Faster switching
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Diamond power devices: performance advantages & key applications
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Next-Gen 
diamond
devices

Donato, N., et al. “Diamond Power Devices: State of the Art, Modelling, Figures of Merit and Future Perspective.” Journal of Physics., vol. 53, no. 9, 2020
Chow T P, Omura I, Higashiwaki M, Kawarada H and Pala V 2017 Smart power devices and ICs using GaAs and wide and extreme bandgap semiconductors IEEE Trans. Electron 
Devices 64 856–73

Prototype Diamond 
Devices

5 kV Lateral SBDs

Buried channel PCSSFast actuation:
Grid-protection
Pulsed power

Photo switches

Unipolar diodes 
& transistors

High voltage:
HVDC/UHVDC

Application Diamond 
Devices

Performance 
Benefits

Higher BV
Faster switching

Longer lifetime
High slew rates
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Diamond Schottky barrier diodes: vertical vs. Lateral

Pseudo-vertical SBDs

Vertical SBDs

A. Traoré, P. Muret, A. Fiori, D. Eon, E. Gheeraert, and J. Pernot, Appl Phys Lett 104, (2014)
J. Wang, G. Shao, Q. Li, G. Chen, X. Yan, Z. Song, Y. Wang, R. Wang, W. Wang, S. Fan, and H.X. Wang, IEEE Trans Electron Devices 69, 6231 (2022)
H. Umezawa, S.I. Shikata, and T. Funaki, in Jpn J Appl Phys (Japan Society of Applied Physics, 2014)
K. Ikeda, H. Umezawa, N. Tatsumi, K. Ramanujam, and S. ichi Shikata, Diam Relat Mater 18, 292 (2009)
R. Kumaresan, H. Umezawa, N. Tatsumi, K. Ikeda, and S. Shikata, Diam Relat Mater 18, 299 (2009)

Challenges for PVSBD/VSBD:

 Breakdown voltage scales 
with epitaxial layer 
thickness

 PVSBD: Deep dry etching 
of diamond is difficult & 
creates processing issues

 VSBD: Difficult to grow 
heavily doped substrate; 
high defect densities

G. Chicot, D. Eon, and N. Rouger, Diam Relat Mater 69, 68 (2016).
 Y. Kato, T. Teraji, T. Matsumoto, N. Tokuda, and H. Umezawa, in Power Electronics Device Applications of Diamond Semiconductors (Elsevier, 2018), 
pp. 219–294.
J. Achard, F. Silva, R. Issaoui, O. Brinza, A. Tallaire, H. Schneider, K. Isoird, H. Ding, S. Koné, M.A. Pinault, F. Jomard, and A. Gicquel, Diam Relat Mater 
20, 145 (2011).
A. Toros, M. Kiss, T. Graziosi, S. Mi, R. Berrazouane, M. Naamoun, J. Vukajlovic Plestina, P. Gallo, and N. Quack, Diam Relat Mater 108, (2020).

Solution for >5kV operations:
 Lateral SBD:
 Scalability of BV
 Does not require thick 

epitaxial layers
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(Left) Optical microscope image of linear TLM patterns; (Right) I-V 
measurements from TLM patterns 
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Summary of past experimental results, showing the progress 
in reducing specific contact resistance

Ohmic contact on P+ boron-doped diamond



Schottky contact on P- boron-doped diamond
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Cross-section schematic (Top) 
and top-view microscope image 
(Right) of lateral Schottky diodes

I-V characteristics of lateral Schottky 
diodes at room temperature in semi-log 

and linear scales

 Mo-diamond Schottky contacts are 
fabricated

 Diode Ideality factor ≤ 1.20
 Rectifying ratio over 109 

 Peak electric field ≥ 4 MV/cm

100 µm



4.6 kV Diamond p-type lateral SBDs: Fabrication process

(a) P- epitaxial growth (b) P+ selective growth (c) Ohmic contacts deposition

(d) Al2O3 field plates formation (e) Schottky contacts deposition (f) Microscope image of an SBD 

100 μm

t = 2µm

500µm
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(c) (d) (e)

*Z. Han and C. Bayram, "Diamond p-Type Lateral Schottky Barrier Diodes With High Breakdown Voltage (4612 V at 0.01 mA/Mm)," 
in IEEE Electron Device Letters, vol. 44, no. 10, pp. 1692-1695, Oct. 2023, doi: 10.1109/LED.2023.3310910.



Forward current density at 40V, 300K:
• 0.044 mA/mm w/o FP
• 0.049 mA/mm w/ FP

Diamond p-type lateral SBDs: Forward I-V characteristics

Forward current density at 40V, 473K:
• 5.39 mA/mm w/o FP
• 5.09 mA/mm w/ FP
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Forward current density at 40V, 373K:
• 0.79 mA/mm w/o FP
• 0.64 mA/mm w/ FP



Diamond p-type lateral SBDs: Reverse I-V characteristics

With the Al2O3 FP added, breakdown voltage improved 
from 1159V to over 4612V (limit of setup)

12

TCAD Simulation predicts a 56% reduction in peak 
electric field with the Al2O3field plate added



Summary & Benchmark

Performance goal
 5kV diamond power diodes

Approach
 Lateral Schottky diodes
 Contact regrowth
 Edge termination

Results
 >4.6kV breakdown voltage
 Low contact resistance
 Improved performance at 

high temperature conditions
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Optimize RON
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Contours of constant Baliga figure-of-merit (BFOM)

Challenges for reaching diamond’s limit:
 Poor dopant incorporation efficiency at room 

temperature 
 P-type boron activation energy: 0.38 eV from valence 

band maximum
 N-type phosphorous activation energy: 0.57 eV from 

conduction band minimum

Solutions for reaching low on-resistance:
 Introduce extrinsic carriers through optical excitations
 Bipolar conduction
 High carrier mobility due to the lack of impurity 

scattering
 Fast response (~ns) and high voltage packaging

M. W. Geis et al., “Progress toward diamond Power Field-Effect transistors,” Physica Status Solidi A-applications and Materials Science, vol. 215, no. 22, p. 1800681, Nov. 2018.

Reaching diamond’s material limit with novel power devices
How to reach BFOM limits of UWBG materials?
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Photoconductive semiconductor switches (PCSS)

 PCSS utilize photoconductivity for switching between on / off state

 Application: Hybrid power switch, Trigger generators, Power grid protection etc. 

PCSS application in a hybrid power switch

• E. Majda-Zdancewicz, M. Suproniuk, M. Pawłowski, and M. Wierzbowski, “Current state of photoconductive semiconductor switch engineering,” Opto-electronics Review, vol. 26, no. 2, pp. 92–102, May 2018.
• F. Zutavern et al., Fiber-Optic controlled PCSS triggers for high voltage pulsed power switches. 2005.

PCSS application in a capacitive discharger pulser



Buried channel PCSS concept: theory
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 Effective circuit model of (a) conventional PCSS without the buried channel and (b) 
buried channel PCSS. 

 Current density distribution in logarithmic scale based on TCAD simulation inside (c) a 
conventional PCSS and (d) a buried channel PCSS under the same condition as (c). 

Equivalent circuit model:

• Conventional PCSS:

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2𝑅𝑅𝐶𝐶 + 𝑅𝑅1
• Buried channel PCSS:

𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2𝑅𝑅𝐶𝐶 +
𝑅𝑅1(2𝑅𝑅2 + 𝑅𝑅3)

𝑅𝑅1 + 2𝑅𝑅2 + 𝑅𝑅3

 Lower on-resistance thanks to the 

low-resistivity channel

 During ON-state, most current 

flows through the buried channel



Buried channel PCSS: experiment
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Type IIa HPHT 
Diamond 
substrate

500 µm thickness

P+ buried channel 
growth

[B] > 5×1020cm-3

500 nm thickness

Semi-Insulating 
layer growth

[B] < 5×1015cm-3

1.5 µm thickness

Ohmic contact 
formation
Ti/Pt/Au

Annealed in Ar

Fabricated PCSS test 
structures:

PCSS A: 8 µm gap

PCSS B: 50 µm gap

PCSS C: 100 µm gap

Packaged sample



Buried channel PCSS: measurement setup
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Optical setup used to measure the 
PCSS device performance

• OPO: optical parametric oscillator

• λ/2: half-wave plate

• PBS: polarizing beam splitter

Electrical setup used to measure the 
PCSS device performance



Photo response: rise/fall time & carrier lifetime
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• Laser spectral range: 210 nm - 230 nm

• Spectral width: < 0.1 nm

• Laser pulse width: 4 ns

• Repetition rate: 10 Hz

 Estimated carrier lifetime in PCSS: τ ≈ 0.5 ns

 PCSS response follows closely with optical     

trigger signal, promising high slew rate when 

bias voltage is scaled up



Photo response: wavelength dependent characteristics
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 Photocurrent increases significantly above 

diamond’s bandgap (< 226 nm)

 Finding: above-bandgap excitations are 

advantageous for lateral diamond PCSS



Photo response: voltage-current characteristics
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 Highest current density achieved: 43.5 A/cm at 60 V

 Highest Responsivity achieved: 130 mA/W at 60 V

 Highest on/off ratio achieved: 3.3 × 1011 at 60 V

 No current saturation observed in all devices

 Linear I-V characteristics for +/- bias

# Spacing (µm) ROFF 
(GΩ) RON (Ω)

𝑹𝑹𝑶𝑶𝑶𝑶𝑶𝑶
𝑹𝑹𝑶𝑶𝑶𝑶

Peak J 
(A/cm)

Normalized 
Responsivity
(mA-cm/W-

kV)

A 8 0.24 72.1 3.3×106 43.5 3.55

B 50 4×104 121.5 3.3×1011 24.4 0.38

C 100 4×104 211.4 1.9×1011 15.3 0.15

At DC bias of 60 V, and excited by 40 µJ, 212 nm laser pulses



Photo response: optical power dependent characteristics
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 At 212 nm and 220 nm, photocurrent saturates 

at high optical power due to invariant 

resistances in contacts and the buried channel

 Invariant resistance in PCSS B: 113 Ω



Photo response: optical power dependent characteristics
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 At 212 nm and 220 nm, photocurrent saturates 

at high optical power due to invariant 

resistances in contacts and the buried channel

 Invariant resistance in PCSS B: 113 Ω

 Invariant resistance in PCSS C: 154 Ω

 Calculated resistances predict that between 

91% to 93% of current conduction is through 

the buried channel



Summary & Benchmark
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  High current density in linear mode at low optical power & electric field
  ~ns rise/fall time and > 1011 on/off ratio

Benchmark of PCSS in terms of on/off ratio vs. 
energy per laser pulse

[1] K. Woo, M. Malakoutian, B. A. Reeves, S. Chowdhury, Appl Phys Lett 2022, 120. [2] C. James, C. Hettler, J. Dickens, IEEE Trans Electron Devices 2011, 58, 508. [3] J. S. Sullivan, Appl Phys Lett 2014, 104, 172106. [4] P. Cao, W. Huang, H. Guo, Y. Zhang, 
IEEE Trans Electron Devices 2018, 65, 2047. [5] P. H. Choi, Y. P. Kim, M.-S. Kim, J. Ryu, S.-H. Baek, S.-M. Hong, S. Lee, J.-H. Jang, IEEE Access 2022, 10, 109558. [6] Q. Wu, T. Xun, Y. Zhao, H. Yang, W. Huang, IEEE Trans Electron Devices 2019, 66, 1837. 
[7] L. Wang, T. Xun, H. Yang, J. Liu, Y. Zhang, Review of Scientific Instruments 2014, 85, 044703. [8] C. James, C. Hettler, J. Dickens, in 2009 IEEE Pulsed Power Conference, IEEE, 2009, pp. 283–286. [9] Z. Hemmat, R. Faez, S. Amiri, in The 6th Power 
Electronics, Drive Systems & Technologies Conference (PEDSTC2015), IEEE, 2015, pp. 253–256. [10] X. Yang, Y. Yang, L. Hu, J. Liu, X. Duan, J. Huang, X. Li, W. Liu, IEEE Photonics Technology Letters 2023, 35, 69. [11] A. D. Koehler, T. J. Anderson, A. 
Khachatrian, A. Nath, M. J. Tadjer, S. P. Buchner, K. D. Hobart, F. J. Kub, ECS Journal of Solid State Science and Technology 2017, 6, S3099. [12] Y. Chen, H. Lu, D. Chen, F. Ren, R. Zhang, Y. Zheng, physica status solidi c 2016, 13, 374.

Benchmark of PCSS in terms of 
photocurrent density vs. lateral E-field
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Lateral SBDs Reverse-blocking MESFETs

• Current work
• 10kV BV
• Low gate leakage

Conclusion & future work

• 5kV BV
• Stable at high temperature
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Can Bayram, and Zhuoran Han BIDIRECTIONAL DIAMOND DEVICES (UIUC2023-082-01(PRO))

High voltage:
HVDC/UHVDC



Lateral SBDs Reverse-blocking MESFETs

• Current work
• 10kV BV
• Low gate leakage

Conclusion & future work

• 5kV BV
• Stable at high temperature
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Buried channel PCSS

• 43.5A/cm current density
• >1011 on/off ratio

Can Bayram, Jae Kwon Lee, Andrey Mironov, and Zhuoran Han LIGHT-TRIGGERED DIAMOND SWITCHES (Application No.: 63/530,434)
Can Bayram, and Zhuoran Han bidirectional diamond devices (Application No.: 63/609,000)
Can Bayram, Jae Kwon Lee, and Zhuoran Han buried channel photoconductive switch (Application No.: 63/531,298)

High voltage:
HVDC/UHVDC

Fast switching:
Grid-protection

• Slew rate: ≥ 500 V/ns, ≥ 200 A/ns
• 20 kV BV
• ≥ 5 A per die

Scale-up



* Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.
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Thank you!
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