Diamond Power Semiconductor Devices

Zhuoran Han, Jaekwon Lee, and Can Bayram

[zhuoran5@illinois.edu;](mailto:zhuoran5@illinois.edu) jaekwon2@illinois.edu; cbayram@illinois.edu

Department of Electrical and Computer Engineering Nick Holonyak, Jr Micro and Nanotechnology Laboratory University of Illinois at Urbana-Champaign, Illinois, USA

Evolving Wide Bandgap Materials and Device Technology for Advanced Switching, Microwave and Grid Applications

Nov 8th, 2024, Virtual

IT ILLINOIS

Electrical & Computer Engineering COLLEGE OF ENGINEERING

Contents

- Introduction & Motivation
- Diamond Schottky Power Diodes
- Diamond Photoconductive Switches
- Conclusion & Future work

Motivation: higher voltage, current, and speed discrete devices

 \triangleq Improve/simplify circuit realization with fewer higher voltage/current devices/modules

ECE ILLINOIS

Reduce energy storage requirements and passive component sizes

C. Ó. Mathúna, N. Wang, S. Kulkarni and S. Roy, "Review of Integrated Magnetics for Power Supply on Chip (PwrSoC)," in *IEEE Transactions on Power Electronics*, vol. 27, no. 11, pp. 4799-4816, Nov. 2012

Ultra-Wide-Bandgap semiconductors: diamond's material advantages

Donato, N., et al. "Diamond Power Devices: State of the Art, Modelling, Figures of Merit and Future Perspective." Journal of Physics., vol. 53, no. 9, 2020
4

Diamond power devices: performance advantages & key applications

Donato, N., et al. "Diamond Power Devices: State of the Art, Modelling, Figures of Merit and Future Perspective." Journal of Physics., vol. 53, no. 9, 2020 Chow T P, Omura I, Higashiwaki M, Kawarada H and Pala V 2017 Smart power devices and ICs using GaAs and wide and extreme bandgap semiconductors IEEE Trans. Electron Devices 64 856–73

Contents

- Introduction & Motivation
- Diamond Schottky Power Diodes
- Diamond Photoconductive Switches
- Conclusion & Future work

Diamond Schottky barrier diodes: vertical vs. Lateral

Challenges for PVSBD/VSBD:

- **❖ Breakdown voltage scales** with epitaxial layer thickness
- PVSBD: Deep dry etching of diamond is difficult & creates processing issues
- VSBD: Difficult to grow heavily doped substrate; high defect densities

Solution for >5kV operations: Lateral SBD:

- \checkmark Scalability of BV
- \checkmark Does not require thick epitaxial layers

A. Traoré, P. Muret, A. Fiori, D. Eon, E. Gheeraert, and J. Pernot, Appl Phys Lett 104, (2014) G. Shao, Q. Li, G. Chen, X. Yan, Z. Song, Y. Wang, R. Wang, W. Wang, S. Fan, and H.X. Wang, IEEE Trans Electron Devices 69, 6231 (2022) a, S.I. Shikata, and T. Funaki, in Jpn J Appl Phys (Japan Society of Applied Physics, 2014) K. Ikeda, H. Umezawa, N. Tatsumi, K. Ramanujam, and S. ichi Shikata, Diam Relat Mater 18, 292 (2009) R. Kumaresan, H. Umezawa, N. Tatsumi, K. Ikeda, and S. Shikata, Diam Relat Mater 18, 299 (2009)

G. Chicot, D. Eon, and N. Rouger, Diam Relat Mater 69, 68 (2016).

7

Y. Kato, T. Teraji, T. Matsumoto, N. Tokuda, and H. Umezawa, in Power Electronics Device Applications of Diamond Semiconductors (Elsevier, 2018), pp. 219–294.

J. Achard, F. Silva, R. Issaoui, O. Brinza, A. Tallaire, H. Schneider, K. Isoird, H. Ding, S. Koné, M.A. Pinault, F. Joman Relat A. G 20, 145 (2011).

A. Toros, M. Kiss, T. Graziosi, S. Mi, R. Berrazouane, M. Naamoun, J. Vukajlovic Plestina, P. Gallo, and N. Quack, Diam Relat Mater 10

Ohmic contact on P+ boron-doped diamond

Schottky contact on P- boron-doped diamond

9

4.6 kV Diamond p-type lateral SBDs: Fabrication process

*Z. Han and C. Bayram, "Diamond p-Type Lateral Schottky Barrier Diodes With High Breakdown Voltage (4612 V at 0.01 mA/Mm)," in IEEE Electron Device Letters, vol. 44, no. 10, pp. 1692-1695, Oct. 2023, doi: 10.1109/LED.2023.3310910.

Diamond p-type lateral SBDs: Forward *I-V* **characteristics**

Diamond p-type lateral SBDs: Reverse *I-V* **characteristics**

from 1159V to over 4612V (limit of setup)

electric field with the AI_2O_3 field plate added

Summary & Benchmark

Contents

- Introduction & Motivation
- Diamond Schottky Power Diodes
- Diamond Photoconductive Switches
- Conclusion & Future work

Reaching diamond's material limit with novel power devices

How to reach BFOM limits of UWBG materials?

Challenges for reaching diamond's limit:

- Poor dopant incorporation efficiency at room temperature
- P-type boron activation energy: 0.38 eV from valence band maximum
- N-type phosphorous activation energy: 0.57 eV from conduction band minimum

Solutions for reaching low on-resistance:

- ◆ Introduce extrinsic carriers through optical excitations
	- \checkmark Bipolar conduction
	- \checkmark High carrier mobility due to the lack of impurity scattering
	- Fast response (~ns) and high voltage packaging

Photoconductive semiconductor switches (PCSS)

- PCSS utilize photoconductivity for switching between on / off state
- Application: **Hybrid power switch**, **Trigger generators**, **Power grid protection** etc.

PCSS application in a capacitive discharger pulser

PCSS application in a hybrid power switch

• E. Majda-Zdancewicz, M. Suproniuk, M. Pawłowski, and M. Wierzbowski, "Current state of photoconductive semiconductor switch engineering," Opto-electronics Review, vol. 26, no. 2, pp. 92–102, May 2018. • F. Zutavern et al., Fiber-Optic controlled PCSS triggers for high voltage pulsed power switches. 2005. **ECE ILLINOIS**

Buried channel PCSS concept: theory

 Effective circuit model of **(a)** conventional PCSS without the buried channel and **(b)** buried channel PCSS.

 Current density distribution in logarithmic scale based on TCAD simulation inside **(c)** a conventional PCSS and **(d)** a buried channel PCSS under the same condition as **(c)**.

Equivalent circuit model:

• Conventional PCSS:

 $R_{conventional} = 2 R_C + R_1$

• Buried channel PCSS:

 $R_{buried\ channel} = 2 R_C +$ $R_1(2R_2 + R_3)$ $R_1 + 2R_2 + R_3$

 \checkmark Lower on-resistance thanks to the

low-resistivity channel

 \checkmark During ON-state, most current

flows through the buried channel

Buried channel PCSS: experiment

Buried channel PCSS: measurement setup

Beam Block

Optical setup used to measure the PCSS device performance

- OPO: optical parametric oscillator
- λ /2: half-wave plate
- PBS: polarizing beam splitter

Electrical setup used to measure the PCSS device performance

Photo response: rise/fall time & carrier lifetime

- Laser spectral range: 210 nm 230 nm
- Spectral width: < 0.1 nm
- Laser pulse width: 4 ns
- Repetition rate: 10 Hz
- Estimated carrier lifetime in PCSS: $\tau \approx 0.5$ ns
- \triangleright PCSS response follows closely with optical trigger signal, promising high slew rate when bias voltage is scaled up

Photo response: wavelength dependent characteristics

- \triangleright Photocurrent increases significantly above diamond's bandgap (< 226 nm)
- \triangleright Finding: above-bandgap excitations are

advantageous for lateral diamond PCSS

Photo response: voltage-current characteristics

Photo response: optical power dependent characteristics

 \triangleright At 212 nm and 220 nm, photocurrent saturates at high optical power due to invariant resistances in contacts and the buried channel Invariant resistance in PCSS B: **113 Ω**

Photo response: optical power dependent characteristics

 \triangleright At 212 nm and 220 nm, photocurrent saturates at high optical power due to invariant resistances in contacts and the buried channel Invariant resistance in PCSS B: **113 Ω** Invariant resistance in PCSS C: **154 Ω** \triangleright Calculated resistances predict that between **91%** to **93%** of current conduction is through the buried channel

Summary & Benchmark

 High current density in linear mode at low optical power & electric field **~ns rise/fall time** and **> 1011 on/off ratio**

[1] K. Woo, M. Malakoutian, B. A. Reeves, S. Chowdhury, Appl Phys Lett 2022, 120. [2] C. James, C. Hettler, J. Dickens, IEEE Trans Electron Devices 2011, 58, 508. [3] J. S. Sullivan, Appl Phys Lett 2014, 104, 172106. [4] P IEEE Trans Electron Devices 2018, 65, 2047. [5] P. H. Choi, Y. P. Kim, M.-S. Kim, J. Ryu, S.-H. Baek, S.-M. Hong, S. Lee, J.-H. Jang, IEEE Access 2022, 10, 109558. [6] Q. Wu, T. Xun, Y. Zhao, H. Yang, W. Huang, IEEE Trans Е [7] L. Wang, T. Xun, H. Yang, J. Liu, Y. Zhang, Review of Scientific Instruments 2014, 85, 044703. [8] C. James, C. Hettler, J. Dickens, in 2009 IEEE Pulsed Power Conference, IEEE, 2009, pp. 283-286. [9] Z. Hemmat, R. Faez Drive Systems & Technologies Conference (PEDSTC2015), IEEE, 2015, pp. 253-256. [10] X. Yang, Y. Yang, Y. Yang, L. Hu, J. Liu, X. Duan, J. Huang, X. Li, W. Liu, IEEE Photonics Technology Letters 2023, 35, 69. [11] A. D. Koe Khachatrian, A. Nath, M. J. Tadjer, S. P. Buchner, K. D. Hobart, F. J. Kub, ECS Journal of Solid State Science and Technology 2017, 6, S3099. [12] Y. Chen, H. Lu, D. Chen, F. Ren, R. Zhang, Y. Zheng, physica status solidi

25

ILLINOIS

Contents

- Introduction & Motivation
- Diamond Schottky Power Diodes
- Diamond Photoconductive Switches
- Conclusion & Future work

Conclusion & future work

Conclusion & future work

28

ECE ILLINOIS

Can Bayram, Jae Kwon Lee, Andrey Mironov, and Zhuoran Han LIGHT-TRIGGERED DIAMOND SWITCHES (Application No.: 63/530,434)

Can Bayram, and Zhuoran Han bidirectional diamond devices (Application No.: 63/609,000)

Can Bayram, Jae Kwon Lee, and Zhuoran Han buried channel photoconductive switch (Application No.: 63/531,298)

Acknowledgements

Our work is partially supported by

- Coherent / II-VI Foundation
- Advanced Research Projects Agency–Energy (ARPA-E), under award number DE-AR0001846
- Office of Naval Research (ONR), under award number 13235235
- Applied Research Institute (ARI) / Silicon Crossroads Microelectronics Commons (SCMC) Hub
- University of Illinois Urbana-Champaign ECE Distinguished Research Fellowship
- University of Illinois Urbana-Champaign ECE Promise of Excellence Fellowship
- Andrew T. Yang Research and Entrepreneurship Award
- Nick and Katherine Holonyak Jr. Outstanding Research Award
- SPIE Optics and Photonics Scholarship

* Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.

Publications & patents

- Journal Papers:
- Z. Han, J. Lee, S. Messing, T. Reboli, A. Mironov, and C. Bayram, **"Buried Channel Diamond Photoconductive Switch with High Above-Bandgap Responsivity," (2024),** *IEEE Electron Device Letters (Top downloaded article)*
- Z. Han, and C. Bayram, "Diamond p-type Lateral Schottky Barrier Diodes with High Breakdown Voltage (> 4.6 kV at 0.01 mA/mm)," **(2023),** *IEEE Electron Device Letters (Top downloaded article)*
- J. Lee, C. Bayram, and J.P. Leburton, **"High Field Transport in (Ultra) Wide Bandgap Semiconductors: Diamond Versus Cubic GaN," (2024),** *IEEE Transactions on Electron Devices (Top downloaded article)*
- Patents:
- Can Bayram, Jae Kwon Lee, Andrey Mironov, and Zhuoran Han **LIGHT-TRIGGERED DIAMOND SWITCHES** (Application No.: 63/530,434)
- Can Bayram, and Zhuoran Han **BIDIRECTIONAL DIAMOND DEVICES** (Application No.: 63/609,000)
- Can Bayram, Jae Kwon Lee, and Zhuoran Han **BURIED CHANNEL PHOTOCONDUCTIVE SWITCH** (Application No.: 63/531,298)

Thank you!

