Coherent/II-VI Foundation Mini-Conference 2025, May 19.

Unique electron trapping and its impacts on electron mobility in SiC n-channel MOSFETs

X. Chi¹, K. Ito¹, T. Suto², A. Shima², K. Mikami¹, M. Kaneko¹, T. Kimoto¹

¹Kyoto University ²Hitachi, Ltd. R&D Group

Outline of this talk

- 1. Background and purpose of this study
- 2. Device fabrication and measurements
- 3. Unique carrier trapping near SiC MOS interfaces
- 4. Carrier scattering and physics-based model of SiC MOSFETs
- 5. Summary

Outline of this talk

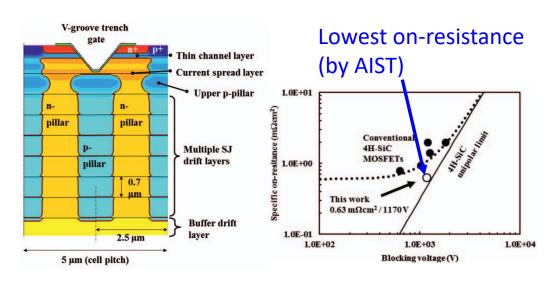
1. Background and purpose of this study

- 2. Device fabrication and measurements
- 3. Unique carrier trapping near SiC MOS interfaces
- 4. Carrier scattering and physics-based model of SiC MOSFETs
- 5. Summary

SiC power MOSFETs

SiC MOSFETs: next-generation low-loss and high-voltage power devices

SiC MOSFETs in practical use


EV Tesla Model 3

Train

Remarkable energy saving

https://www.statista.com/chart/16948/total-number-of-premium-cars-sold-in-the-us/ https://jr-central.co.jp/news/release/nws001685.html Research on the highest-performance SiC MOSFET

Super Junction V-Groove Trench MOSFET (AIST) [1] $1170 \text{ V} - 0.63 \text{ m}\Omega\text{cm}^2$

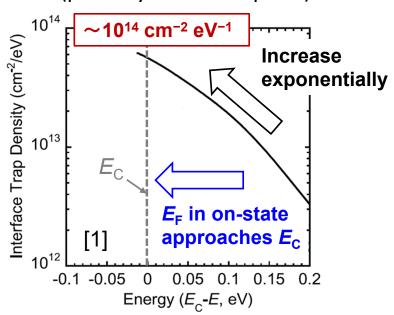
[1] T. Masuda et al., IEDM Tech. Dig. (2018), p. 177.

The main issue in SiC MOSFETs

A high density of interface traps exists near the MOS interface (origin is still unclear)

Energy distribution of interface trap density (Dit)

- D_{it}: increase exponentially towards E_C
- $D_{\rm it}$ near $E_{\rm C}$: ~10¹⁴ cm⁻² eV⁻¹
 - ... 1000 times higher than Si MOS

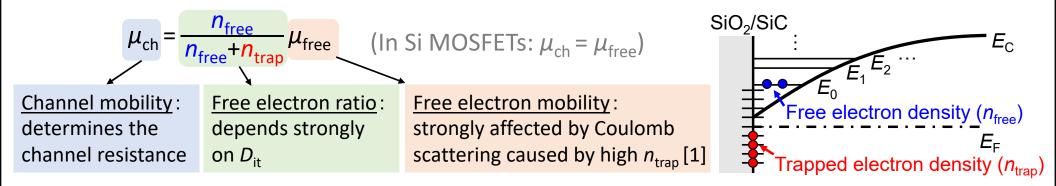

Performance degradation caused by high D_{it}

 $E_{\rm F}$ approaches $E_{\rm C}$ in the on-state of MOSFETs

Extremely high D_{it} near E_{C}

- Severe electron trapping
- 2. Coulomb scattering

 $\underline{D_{it}}$ distribution near $\underline{E_C}$ (partially modified quote)


Main reason for the low channel mobility in SiC MOSFETs

 $(\mu_{\rm ch} = 20 \text{ cm}^2/\text{Vs vs.} \, \mu_{\rm bulk} = 1020 \text{ cm}^2/\text{Vs})$

[1] T. Hatakeyama et al., Appl. Phys. Express 12, 021003 (2019).

Impact of interface traps on device characteristics

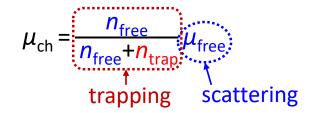
Relationship of μ_{ch} and μ_{free} in SiC MOSFETs

 μ_{ch} : include "Trapping" × "Scattering" caused by interface traps

Basic understanding of interface traps: essential for modeling of SiC MOSFETs

However...

There is a lack of comprehensive understanding of interface traps


→ Modeling of SiC MOSFETs is incomplete (a long-standing issue)

[1] K. Ito et al., Appl. Phys. Express 16, 071001 (2023).

Purpose of this study

To distinguish the impacts of trapping and scattering

 \rightarrow Measurements of n_{free} , μ_{free} , n_{trap} are necessary (not μ_{ch})

Previous study

Combine **Split** *C*—*V* and **MOS Hall-effect** measurements [1]

Obtain total electron density (n_{total})

Obtain $n_{
m free}$ and $\mu_{
m free}$ separately

 $(\mu_{Hall} = \mu_{free})$ with Hall scattering factor = 1)

 $n_{\text{trap}} = n_{\text{total}} - n_{\text{free}}$

Objective

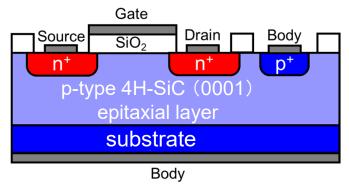
By the measurement and calculation of n_{free} , μ_{free} , n_{trap}

- Obtain a comprehensive understanding of the interface traps
- Elucidate electron trapping and scattering mechanisms in SiC MOS channels

Establish a physics-based model for SiC MOSFETs based on a comprehensive understanding of electron trapping and scattering phenomena

[1] T. Hatakeyama et al., Appl. Phys. Express 10, 046601 (2017).

Outline of this talk


1. Background and purpose of this study

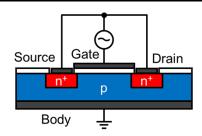
2. Device fabrication and measurements

- 3. Unique carrier trapping near SiC MOS interfaces
- 4. Carrier scattering and physics-based model of SiC MOSFETs
- 5. Summary

Device fabrication and measurements

Device fabrication

Gate oxides


Dry oxidation → NO annealing (standard process) (Oxide thickness: 42 ~ 50 nm)

P-body doping concentrations $(N_{\underline{A}})$

 7×10^{14} , 3×10^{15} , 3×10^{16} , 3×10^{17} , 1×10^{18} cm⁻³


Measurements and extraction of n_{trap}

Split *C*–*V* measurements

Measurement of n_{total}

MOS-Hall effect measurements

Measurement of n_{free} and μ_{free} (Hall scattering factor = 1)

Extraction of *n*_{trap}

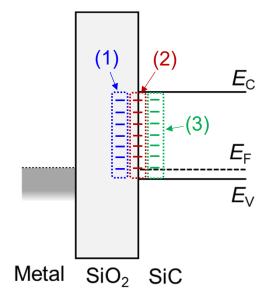
$$n_{\text{trap}} = n_{\text{total}} - n_{\text{free}}$$

Outline of this talk

- 1. Background and purpose of this study
- 2. Device fabrication and measurements
- 3. Unique carrier trapping near SiC MOS interfaces
- 4. Carrier scattering and physics-based model of SiC MOSFETs
- 5. Summary

Possible origins of interface traps

(1) Near-interface oxide traps (NITs)


- C defects [1] $(C_0 = C_0^{[2]}, Si_2 C O^{[3]})$
- Intrinsic oxide defects

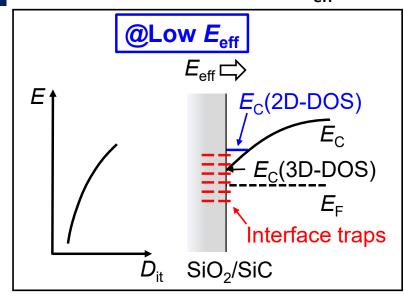
(2) Traps at the MOS interface

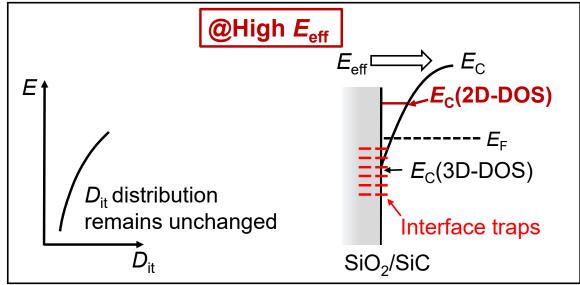
- C defects (C clusters [1,2], C-C [4])
- Dangling bonds [5]

(3) Traps in SiC

- Conduction band fluctuations [6, 7]
- C defects ((C₂)_{Si} [8])

Where are the interface traps primarily located?

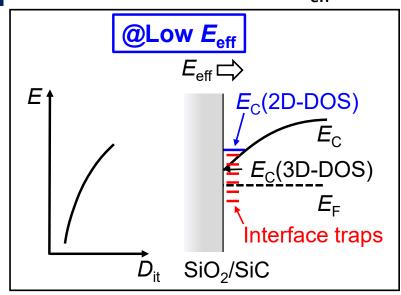

... Important information for the modeling of SiC MOSFETs

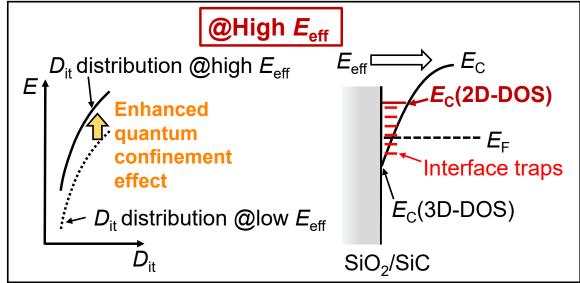

- [1] V. V. Afanasev et al., Phys. Status Solidi A **162**, 321 (1997). [2] P. Deák et al., J. Phys. D: Appl. Phys. **40**, 6242 (2007).
- [3] F. Devynck et al., Phys. Rev. B 84, 235320 (2011).
- [5] T. Umeda et al., Appl. Phys. Lett. 113, 061605 (2018).
- [7] H. Yoshioka et al., AIP Advances 8, 045217 (2018).

- [4] X. Shen et al., Appl. Phys. Lett. 98, 053507 (2011).
- [6] Y. Matsushita et al., Nano Letters 17, 6458 (2017).
- [8] T. Kobayashi and Y. Matsushita, JAP 126, 145302 (2019).

Quantum confinement effect and D_{it} distribution

Increasing effective field (E_{eff}) : enhances the quantum confinement effect




[Case 1] Traps are primarily located within the SiO₂ or at the MOS interface:

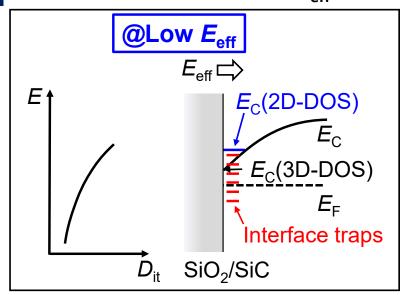
 D_{it} distribution is energetically fixed with respect to E_c (3D-DOS)

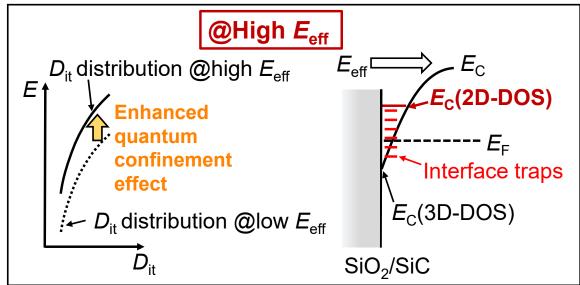
Quantum confinement effect and D_{it} distribution

Increasing effective field (E_{eff}) : enhances the quantum confinement effect

[Case 2] Traps are primarily located in SiC:

 D_{it} distribution may shift along with E_c (2D-DOS)

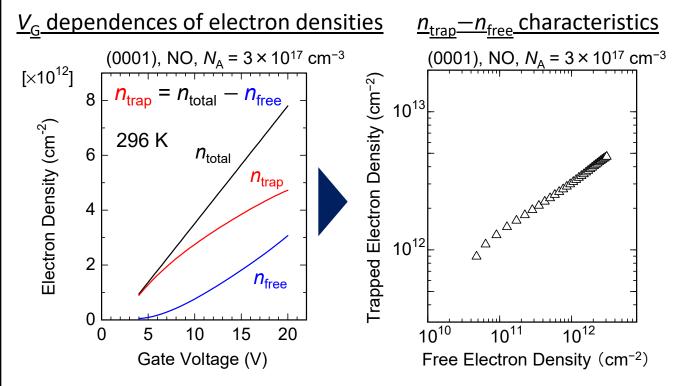

Control of E_{eff}


 E_{eff} can be controlled by p-body doping concentration (N_A) and body bias (V_{body})

$$E_{\text{eff}} = \frac{\sqrt{2e\varepsilon_{\text{SiC}}N_{\text{A}}(2\psi_{\text{B}} - V_{\text{body}}) + en_{\text{free}}/3}}{\varepsilon_{\text{SiC}}}$$

Quantum confinement effect and D_{it} distribution

Increasing effective field (E_{eff}) : enhances the quantum confinement effect

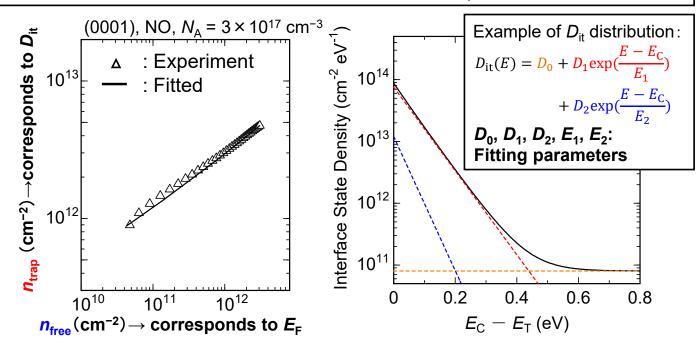


[Case 2] Traps are primarily located in SiC:

 D_{it} distribution may shift along with E_c (2D-DOS)

Clarify where the interface traps are primarily located by investigating whether the $D_{\rm it}$ distribution shifts along with $E_{\rm c}$ (2D-DOS) (by changing $N_{\rm A}$ and $V_{\rm body}$)

Experimental results and extraction of D_{it} distribution

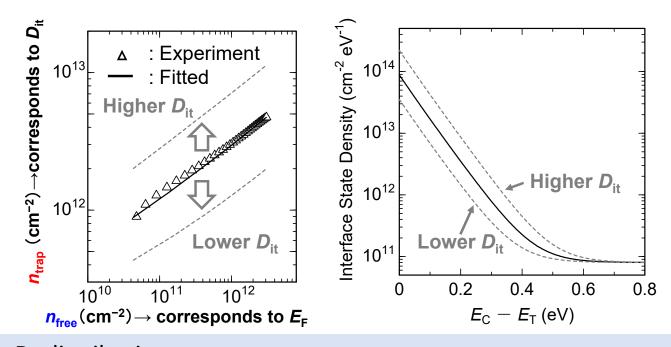

[1] K. Ito et al., J. Appl. Phys. **128**, 095702 (2020)

Experimental results and extraction of Dit distribution

$$n_{\text{trap}} = \int_{E_{\text{i}}}^{\infty} \frac{1}{\exp\left(\frac{E - \boldsymbol{E}_{\text{F}}(\boldsymbol{n}_{\text{free}})}{k_{\text{B}}T}\right) + 1} \boldsymbol{D_{\text{it}}(\boldsymbol{E})} dE$$

Extraction method

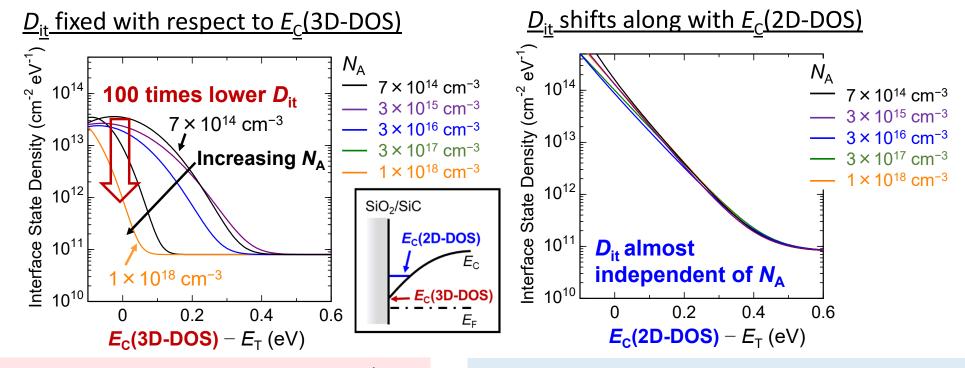
- 1. Calculate E_F from n_{free} self-consistently [1]
- 2. Extract D_{it} distributions by reproducing $n_{trap} n_{free}$ characteristics


[1] K. Ito et al., J. Appl. Phys. **128**, 095702 (2020)

Experimental results and extraction of D_{it} distribution

$$n_{\text{trap}} = \int_{E_{\text{i}}}^{\infty} \frac{1}{\exp\left(\frac{E - \boldsymbol{E}_{\text{F}}(\boldsymbol{n}_{\text{free}})}{k_{\text{B}}T}\right) + 1} \boldsymbol{D_{\text{it}}(\boldsymbol{E})} dE$$

Extraction method

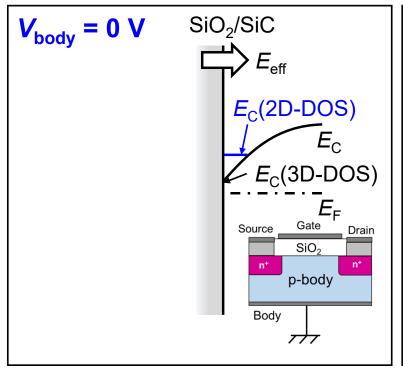

- 1. Calculate E_F from n_{free} self-consistently [1]
- 2. Extract D_{it} distributions by reproducing $n_{trap} n_{free}$ characteristics

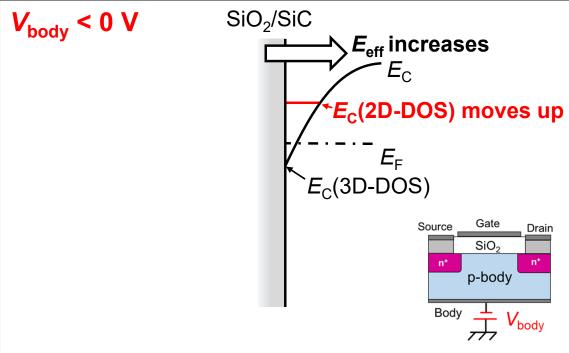
Calculate for cases where the D_{it} distribution is energetically fixed with respect to $E_c(3D-DOS)/shifts$ along with $E_c(2D-DOS)$

[1] K. Ito et al., J. Appl. Phys. **128**, 095702 (2020)

D_{it} distributions extracted from $n_{trap} - n_{free}$ characteristics

 $D_{\rm it}$ values sharply decrease with $N_{\rm A} \uparrow$... Hardly understandable

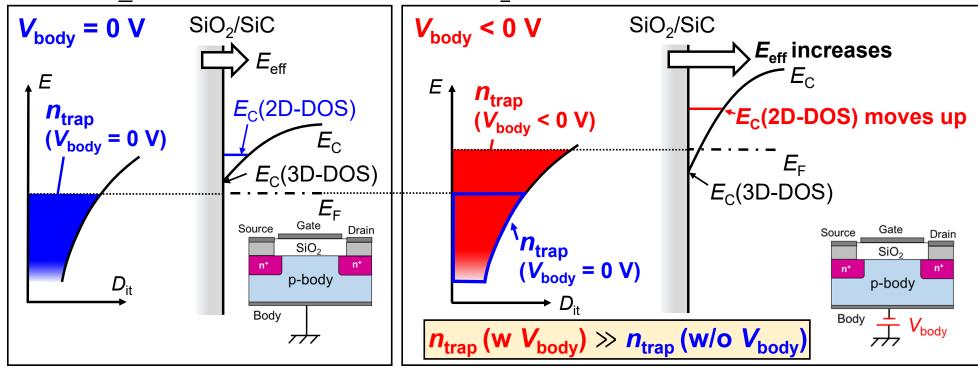

 D_{it} almost independent of N_A (determined by process) ... Reasonable result


 D_{it} distribution depends on N_A ? ... Need to verify using the same device

 \rightarrow Focus on the **body bias effect**

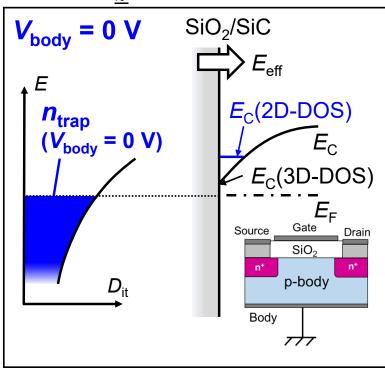
Impact of body bias on n_{trap}

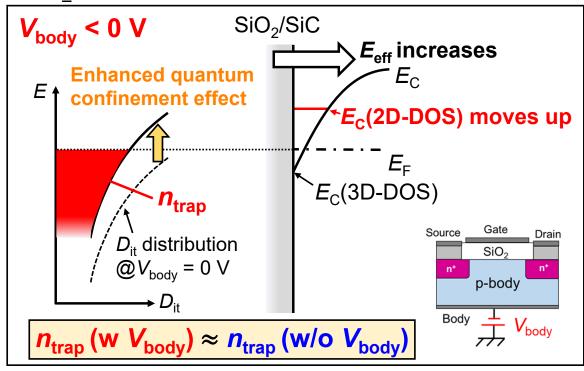
Negative body bias (V_{body}) : increases E_{eff}



Impact of body bias on n_{trap}

Compare n_{trap} for the cases where $V_{\text{body}} = 0 \text{ V}$ and $V_{\text{body}} < 0 \text{ V}$ (@a given n_{free})

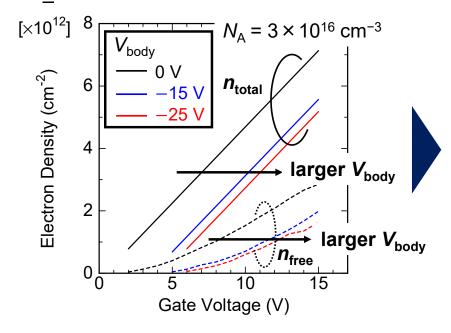

[Case 1] D_{it} distribution fixed with respect to E_{c} (3D-DOS)



Impact of body bias on n_{trap}

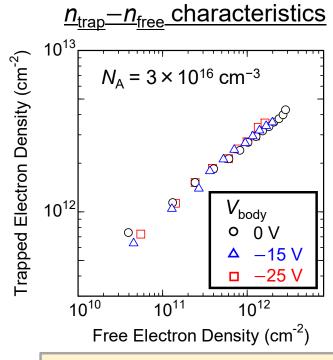
Compare n_{trap} for the cases where $V_{\text{body}} = 0 \text{ V}$ and $V_{\text{body}} < 0 \text{ V}$ (@a given n_{free})

[Case 2] D_{it} distribution shifts along with E_{C} (2D-DOS)



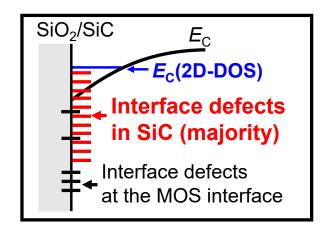
It is possible to verify whether the D_{it} distribution shifts along with $E_{C}(2D-DOS)$

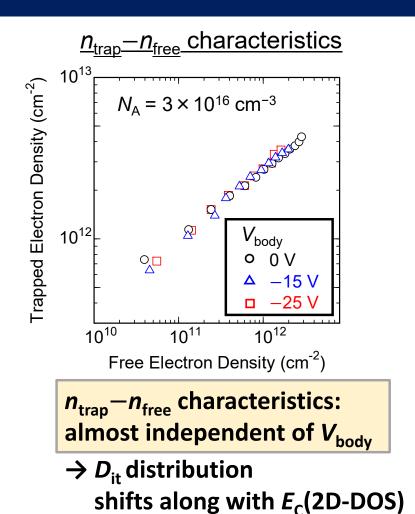
by comparing n_{trap} under various V_{body}


Body bias measurement results

V_G dependences of electron densities

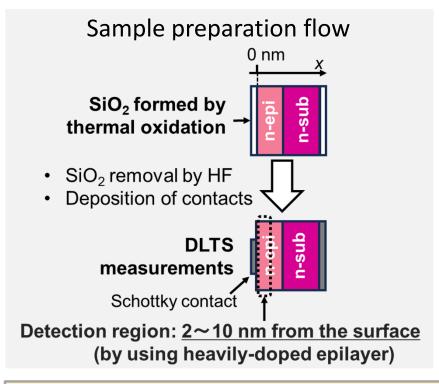
Positive shifts according to $V_{\rm body}$

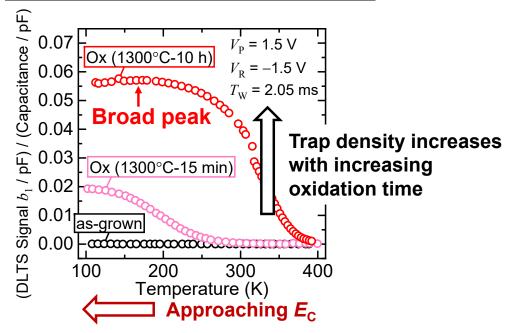

 \rightarrow Appropriate control of V_{body}



 $n_{\text{trap}} - n_{\text{free}}$ characteristics: almost independent of V_{body}

 $\rightarrow D_{it}$ distribution shifts along with E_c (2D-DOS)


Body bias measurement results



Electron trapping inside SiC

Thermal oxidation of SiC: generates multiple defect levels near E_{c} [1]

DLTS spectra of fabricated samples

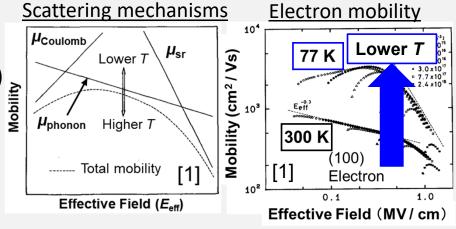
Defects inside SiC induced by oxidation: a primary origin of interface traps ... Electrons are trapped mainly inside SiC

[1] H. Fujii et al., Appl. Phys. Express 17, 041004 (2024).

Outline of this talk

- 1. Background and purpose of this study
- 2. Device fabrication and measurements
- 3. Unique carrier trapping near SiC MOS interfaces
- 4. Carrier scattering and physics-based model of SiC MOSFETs
- 5. Summary

Electron scattering mechanism in MOS channels


In Si MOSFETs (extremely low D_{it})

- Dominant scattering mechanism $[\bot]$ @Low- E_{eff} : Coulomb scattering (ionized impurities)

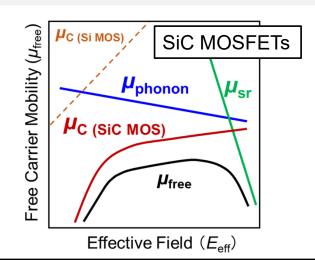
 - @High- E_{eff} : Surface roughness (sr) scattering
- With lowering the temperature...

 μ_{Coulomb} : decreases

 μ_{phonon} : increases

[1] S. Takagi et al., IEEE Trans. Electron Devices **41**, 2357 (1994).

In SiC MOSFETs

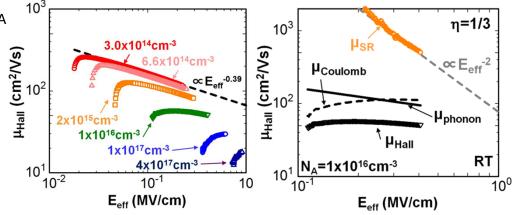

High density of interface defects near the MOS interface

Coulomb scattering by non-ideal charges is dominant [2, 3] (trapped electrons and fixed charges)

Extremely difficult to distinguish $\mu_{ exttt{phonon}}$ and $\mu_{ exttt{sr}}$

[2] M. Noguchi et al., Jpn. J. Appl. Phys. 59, 051006 (2020).

[3] K. Ito et al., Appl. Phys. Express 17, 081003 (2024).



Previous report and our approach

Previous report on scattering mechanism in SiC MOS channels [1]

Measurements of μ_{free} in MOSFETs with various N_{A}

- In lightly-doped MOSFETs: $\mu_{\text{free}} \approx \mu_{\text{phonon}}$
- Extraction of $\mu_{\rm phonon}$, $\mu_{\rm sr}$, and $\mu_{\rm Coulomb}$ based on empirical rules
- ... Still lack of a physical understanding of electron scattering mechanism

[1] M. Noguchi et al., IEDM Tech. Dig. (2017), p. 219.

Our approach

- Measure μ_{free} with varying N_{A} and temperature systematically
- Perform numerical calculation of μ_{free} (considering the electron trapping inside SiC) New in this study
- Discuss the scattering mechanism
 by comparing the calculated and experimental results

Calculation method of inversion layer mobility

Electronic states

Self-consistent loop

Schrödinger equation

- Subband energies
- Wavefunctions

Poisson equation

Potential distribution

Momentum relaxation time

(next slide)

Free electron mobility

 Calculated under the relaxation time approximation

[1] H. Fujii et al., Appl. Phys. Express 17, 041004 (2024).

Calculation method of inversion layer mobility

Electronic states

Self-consistent loop . Schrödinger equation

- Subband energies
- Wavefunctions

Poisson equation

Potential distribution

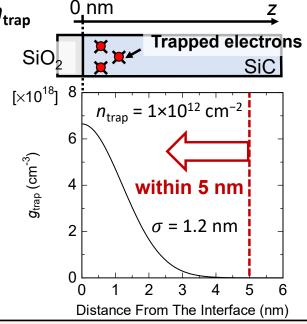
Momentum relaxation time (next slide)

Free electron mobility

 Calculated under the relaxation time approximation The electron trapping inside SiC

Calculate n_{trap} with D_{it} distribution

 $n_{\text{trap}} = \int_{E_i}^{\infty} f(E) \, D_{it}(E) dE \quad D_{it}(E)$: shifts along with $E_{\underline{C}}(2D-DOS)$


Calculate the distribution of n_{trap}

Depth profile of n_{trap} :

$$g_{\text{trap}}(z) = \frac{2n_{\text{trap}}}{\sqrt{2\pi\sigma^2}} \exp(-\frac{z^2}{2\sigma^2})$$

(half Gaussian function [1])

Trapped electrons:
Distributed within 5 nm
from the MOS interface

[1] H. Fujii et al., Appl. Phys. Express 17, 041004 (2024).

Common to

Si MOS

Scattering mechanism

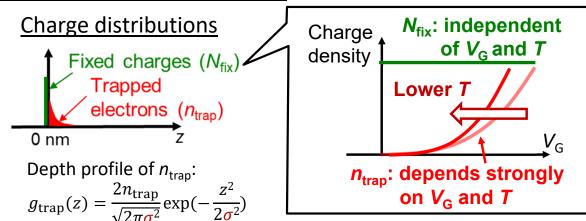
Phonon scattering

- Acoustic phonon (ac) & Non-polar optical phonon (nop) scatterings [1]
- Parameters: deformation potential (D_{ac}, D_{nop}) (Adjusted from the bulk deformation potentials $D_{ac, bulk}$ and $D_{nop, bulk}$ [2])

Surface roughness (sr) scattering

- Correlation function: $\langle \Delta(r_0)\Delta(r_0+r)\rangle = \Delta_{\rm Sr}^2 {\rm e}^{-\sqrt{2}|r|/L_{\rm Sr}}$ (common to Si MOS) [1]
- Parameters: height (Δ_{sr}) and correlation length (L_{sr}) of surface roughness

Coulomb scattering by non-ideal charges (peculiar to SiC MOS)


Fixed charges (N_{fix})

- Locates at the MOS interface
- N_{fix} value: fitting parameter

Trapped electrons (n_{trap})

- n_{trap} : calculated with D_{it} distribution
- Distributes inside SiC

(σ : fitting parameter)

[1] H. Tanaka and N. Mori, Jpn. J. Appl. Phys. **59**, 031006 (2020). [2] H. Iwata and K. M. Itoh, J. Appl. Phys. **89**, 6228 (2001).

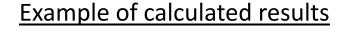
Scattering mechanism

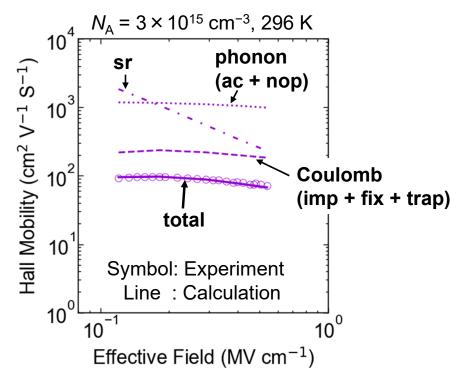
Phonon scattering

- Acoustic phone
- Parameters: de

Surface roughne

- Correlation fur
- Parameters: he


Coulomb scatter


Fixed charges (N_f

- Locates at the
- N_{fix} value: fitti

Trapped electron

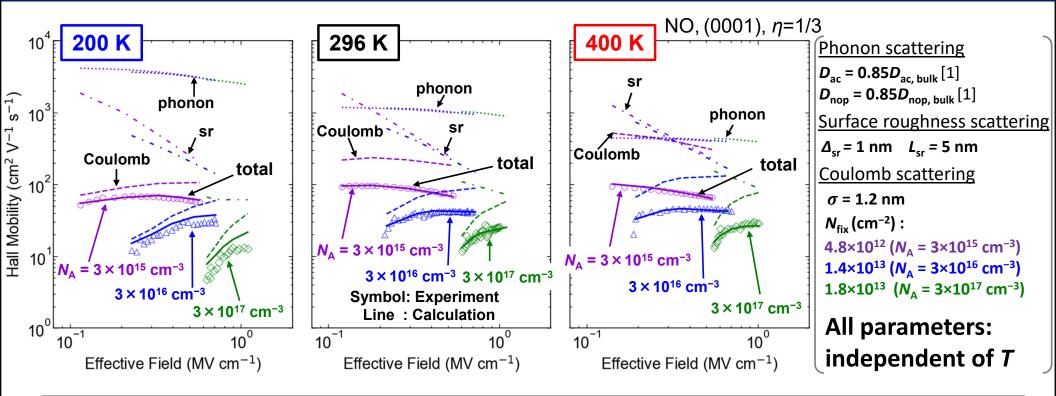
- n_{trap}: calculate
- Distributes ins
 (σ: fitting par

Parameters are uniquely determined by simultaneously reproducing experimental $\mu_{\rm Hall}$ at different temperatures

Common to Si MOS

er T

ver T

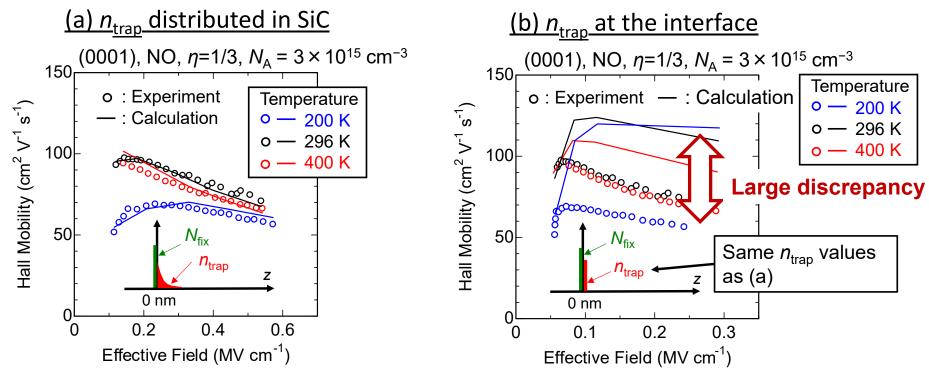

ver T

ver Sends strongly

V_G and T

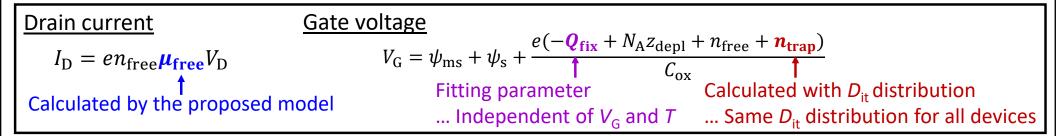
[1] H. Tanaka and N. Mori, Jpn. J. Appl. Phys. **59**, 031006 (2020). [2] H. Iwata and K. M. Itoh, J. Appl. Phys. **89**, 6228 (2001).

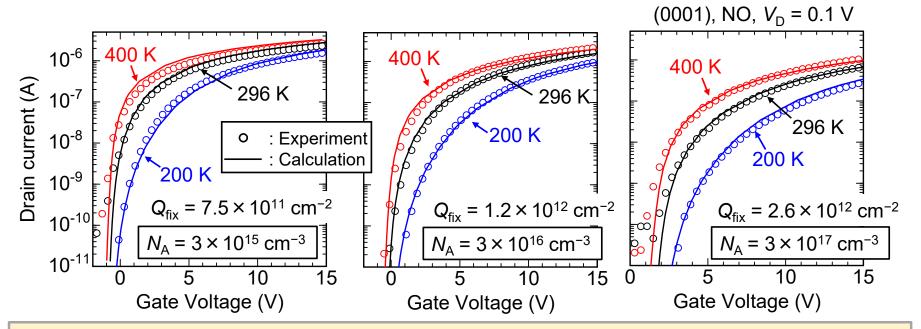
Experimental and calculated μ_{free}


Reproducing experimental μ_{Hall} in a wide range of E_{eff} and T with reasonable parameters

→ Elucidation of the electron scattering mechanism in SiC MOS channels

[1] H. Iwata and K. M. Itoh, J. Appl. Phys. 89, 6228 (2001).


Validation of electron trapping inside SiC


Calculations consider trapped electrons only at the MOS interface were also performed

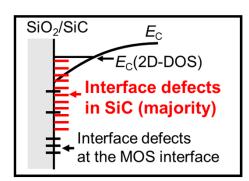
Calculated results for case (b): much different from the experimental results
→ Trapped electrons are actually distributed inside SiC

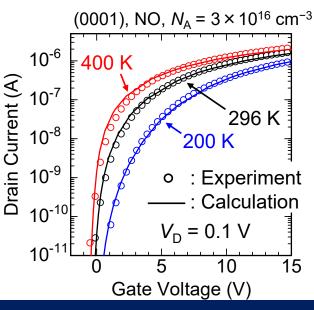
Calculation of gate characteristics

Good agreement with experimental results in a wide I_D range from 10^{-10} to 10^{-6} A

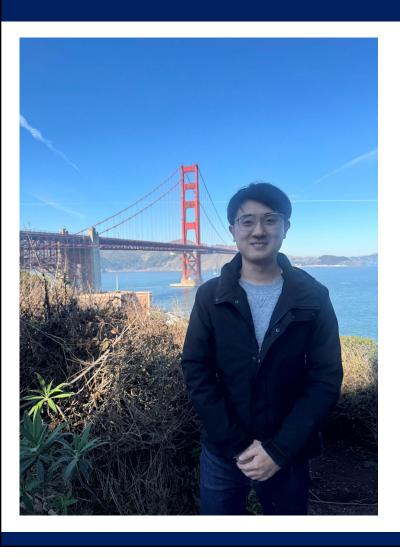
Outline of this talk

- 1. Background and purpose of this study
- 2. Device fabrication and measurements
- 3. Unique carrier trapping near SiC MOS interfaces
- 4. Carrier scattering and physics-based model of SiC MOSFETs


5. Summary


Summary

Modeling of SiC MOSFETs based on a physical understanding of electron trapping and scattering mechanisms in SiC MOS channels


- ☐ Unique carrier trapping near SiC MOS interfaces
 - D_{it} distribution in SiC MOS shifts along with E_{c} (2D-DOS)
 - → Most of the interface traps are located inside SiC (Electrons are trapped mainly inside SiC)
- ☐ Carrier scattering and physics-based model of SiC MOSFETs
 - Calculations that take into account the electron trapping inside SiC
 - \rightarrow Successfully reproduced $\mu_{\rm Hall}$ and gate characteristics in the temperature range of 200 \sim 400 K

First physics-based model for SiC MOSFETs

Self Introduction

Xilun Chi

Kyoto University, Dept. of Electronic Sci. & Eng.

- **Degree**: third-year Ph.D. student
- Undergraduate Studies: Electrical and Electronic Engineering
- Research Topic: Carrier Scattering and Mobility Modeling in SiC MOS Channels
- <u>Awards</u>: IEEE EDS Japan Joint Chapter Student Award (Feb. 2025)
- <u>Publications</u>: 2 papers (IEDM Tech. Digest, JJAP)
- Presentations: 3 times at ICSCRM (2 oral, 1 poster),
 1 time at IEDM (oral)